在追求这一目标的过程中,消除不可预测的行为已被视为一项必要的工程费用。消除计算噪声的努力涵盖了整个微电子技术堆栈,从研究高可靠性材料和设备到纠错电路和架构,再到容错系统和算法。确定性计算显然取得了令人难以置信的成功——在不到四分之三个世纪的时间里,我们已经从大约一千个只能进行相对简单计算的阴极管阵列过渡到每秒能够处理 10 18 次浮点运算的高性能计算百亿亿次系统。[2,3] 然而,能耗已日益成为传统处理器面临的挑战。人工智能 (AI) 和机器学习 (ML) 在多种应用中的采用越来越广泛,以及对更多计算的需求不断增长,导致对结合多种技术(图形处理单元 (GPU)、中央处理单元 (CPU) 等)的异构计算平台的需求更高。随着越来越多的处理器被整合,未使用的处理器需要关闭以处理散热问题(即“暗硅”)。[4] 这些问题加上大量新设备、内存计算、高效的芯片间通信、3D 堆叠和集成技术
超过了现成的 CPU(例如 Cerebras 的 400,000 核 CS-1 晶圆级引擎 [2])和用于资源受限系统的小型 NN 解决方案,其主要优势是面积和功耗效率。本期特刊致力于基于随机计算 (SC) 范式的 NN 硬件实现 [3],[4]。虽然本质上是数字化的,但 SC 提供了模拟计算所具有的几个优势:某些原语的实现非常紧凑且节能——包括 NN 中普遍存在的乘法器和加法器——并且与传感器和执行器具有天然兼容性。此外,SC 没有位有效性的概念,因此相对而言具有容错性。机器学习和模式识别是 20 世纪 60 年代 SC 最初发展的主要驱动力 [3],但当时的研究人员未能实现可扩展性和大规模采用。
我们分析了量子纠错中的表面代码。在这些代码中,量子比特用单元格网格进行编码,这些单元格可能会受到错误的影响。这些错误无法直接检测到;相反,我们检查编码的稳定器,它们对应于网格上的边缘。这使我们能够找到围绕错误的循环。我们分析了纠正这些循环上的错误的各种过程的行为。绝对零度过程是最稳定的,我们运行模拟以确定它可以在平均时间为 O(n3) 的时间内纠正平方错误循环。我们证明了绝对零度过程的上限,并证明了改变过程的平均时间复杂度为 Θ(n3)。然后,我们分析概率算法。概率模型模拟显示的行为表明存在一个临界概率,大约为 0.175,在此概率下无法可靠地纠正错误。我们还分析了热浴算法,该算法会给电网引入误差,但只要温度足够小,就会随机纠正大的误差。
摘要:本研究开发了一种混合整数线性规划 (MILP) 模型,用于智能建筑的最优随机运行调度。本研究的目的是将电力需求与间歇性太阳能可再生资源状况相匹配,并最大限度地降低能源成本。该模型的主要贡献是通过考虑热水、供暖和通风负荷等详细负荷类型来解决智能建筑热负荷的不确定性。在智能电网中,建筑不再是被动消费者。它们是可控负荷,可用于需求侧能源管理。智能家居作为物联网 (IoT) 的一个领域,使建筑的能源系统能够作为智能电网中的主动负荷运行。所提出的公式被设计为 24 小时范围内的随机 MILP 模型,以最大限度地降低总能源成本。在本研究中,蒙特卡罗模拟技术用于为两个环境因素生成 1000 个随机场景:室外温度和太阳辐射。因此,在所提出的模型中,热负荷、光伏板输出功率、太阳能集热器发电量和电力负荷成为随机参数。所提出的模型可节省 20% 的能源成本,并将峰值电力需求从 7.6 KWh 降低到 4.2 KWh。
图3。色谱的宏观和显微镜描述。(a)色谱法的范德特描述通过经验优化预测在最小板高度下的最大分离。(b)GIDDINGS之后的随机单分子描述通过考虑均匀的US(时间,τ1)以及罕见的异质相互作用(时间,τ2)来结合吸附异质性。(c)(顶部)观察到的色谱图具有两个基本种群,由均质(蓝色)和异质(红色)相互作用组成。(底部)基础单分子对可视化亚群的贡献。均质和异质相互作用的解吸时间分别为τ1和τ2。在固定阶段(τ1)花费的时间表示为单个分子事件和j保留模式的总和。
多微电网 (MMG) 的能源管理 (EM) 解决方案是一项提供更多灵活性、可靠性和经济效益的关键任务。然而,由于可再生能源的随机性以及负载波动,MMG 的能源管理 (EM) 成为一项复杂而艰巨的任务,因为可再生能源的渗透率很高。在这方面,本文旨在通过最佳纳入光伏 (PV) 系统、风力涡轮机 (WT) 和生物质系统来解决 MMG 的 EM 问题。在这方面,本文提出了一种增强型水母搜索优化器 (EJSO) 来解决 85 总线 MMGS 系统的 MMG 的 EM,以最小化总成本,同时提高系统性能。所提出的算法基于威布尔飞行运动 (WFM) 和适应度距离平衡 (FDB) 机制来解决传统 JSO 技术的停滞问题。在标准和 CEC 2019 基准函数上测试了 EJSO 的性能,并将获得的结果与优化技术进行了比较。根据获得的结果,与其他优化方法(如沙猫群优化 (SCSO)、蒲公英优化器 (DO)、灰狼优化器 (GWO)、鲸鱼优化算法 (WOA) 和标准水母搜索优化器 (JSO))相比,EJSO 是一种解决 EM 的强大方法。获得的结果表明,建议的 EJSO 的 EM 解决方案可以将成本降低 44.75%,同时系统电压曲线和稳定性分别提高 40.8% 和 10.56%。
成对比较数据在统计学和机器学习中受到了广泛关注,并在各个领域有着广泛的应用。这类数据通常来自锦标赛,其中每个成对比较结果都来自两个选手或队伍之间的比赛,或来自众包环境,其中个人负责比较两个项目,例如图像、电影或产品。具体而言,著名的瑟斯顿 (Thurstone, 1927) 和布拉德利-特里 (BT; Bradley and Terry, 1952) 模型为该领域奠定了基石,随后进行了许多扩展,包括 Shah 等人 (2016a) 提出的参数序数模型,拓宽了参数模型的类别。Oliveira 等人 (2018) 放宽了已知链接函数的假设,并提出了允许链接函数属于广泛函数家族的模型。非参数方法也已出现,例如 Shah 和 Wainwright (2018) 中基于 Borda 计数算法介绍的工作,以及 Chatterjee (2015) 和 Chatterjee 和 Mukherjee (2019) 研究的非参数 Bradley-Terry 模型。此外,还开发了用于众包环境的成对比较模型,如 Chen 等人 (2013) 和 Chen 等人 (2016) 等所讨论的。成对比较模型已获得广泛的应用,包括排名聚合(Chen and Suh,2015;Chen 等人,2019;Heckel 等人,2019;Chen 等人,2022b)、预测比赛 / 锦标赛(Cattelan 等人,2013;Tsokos 等人,2019;Macr`ı Demartino 等人,2024)、测试博彩市场的效率(McHale and Morton,2011;Ly´ocsa and V`yrost,2018;Ramirez 等人,2023)以及基于人工评估改进大型语言模型(Christiano 等人,2017;Ouyang 等人,2022;Zhu 等人,2023)。虽然上述模型对该领域做出了重大贡献,但它们依赖于随机传递性的假设,这意味着球员/球队/项目之间存在严格的排名。然而,这种假设可能不切实际,特别是在涉及多种技能或策略的环境中,不传递性自然会出现。尽管它具有实际重要性,但对允许不传递性的模型的研究仍然有限。一些值得注意的例外包括 Chen 和 Joachims (2016) 和 Spearing 等人 (2023) 的工作,他们通过引入额外参数来描述不传递性以及基于 Bradley-Terry 概率指定绝对优势的参数,扩展了 Bradley-Terry 模型。Spearing 等人 (2023) 提出了一种在完整贝叶斯框架下进行参数估计的马尔可夫链蒙特卡罗算法。然而,他们的贝叶斯程序计算量大,对于涉及许多球员或相对较高潜在维度的高维设置不切实际。 Chen 和 Joachims (2016) 将参数视为固定量,并通过优化正则化目标函数来估计它们。然而,它们的目标函数是非凸的,并且它们的模型高度过度
其他分析通过放宽完全预见假设或将套利与其他用途结合起来考虑,扩展了这些工作。Mokrian 和 Stephen[24]描述了一个随机动态规划(SDP)模型,用于在考虑能源价格不确定性的同时最大化预期套利收入。Sioshansi 等人[35, 34]通过检查“回溯”启发式方法放宽完全预见假设,其中使用假设重复的历史价格模式来调度存储。Walawalkar 等人[39]研究了纽约 ISO 市场的存储经济学,同时考虑了套利和辅助服务(AS)。AS 是公用事业或系统运营商(SO)储备的过剩发电能力,以便为实际和预测的能源需求或供应之间的实时偏差提供缓冲。他们发现,如果在纽约市安装储能系统,则很有可能产生正的净现值。 Drury 等人 [9] 研究了美国多个市场中储能的套利和 AS 价值。其他论文研究了储能和可再生能源之间的相互作用。这包括使用储能来缓解可再生能源的变化和不确定性 [26、1、15];储能和可再生能源的经济和排放影响 [6、17、32、31];以及使用储能来减少对专用输电线路将可再生能源输送到负荷中心的需求 [7、33]。
在追求这一目标的过程中,消除不可预测的行为已被视为一项必要的工程费用。消除计算噪声的努力涵盖了整个微电子技术堆栈,从研究高可靠性材料和设备到纠错电路和架构,再到容错系统和算法。确定性计算显然取得了令人难以置信的成功——在不到四分之三个世纪的时间里,我们已经从大约一千个只能进行相对简单计算的阴极管阵列过渡到每秒能够处理 10 18 次浮点运算的高性能计算百亿亿次系统。[2,3] 然而,能耗已日益成为传统处理器面临的挑战。人工智能 (AI) 和机器学习 (ML) 在多种应用中的采用越来越广泛,以及对更多计算的需求不断增长,导致对结合多种技术(图形处理单元 (GPU)、中央处理单元 (CPU) 等)的异构计算平台的需求更高。随着越来越多的处理器被整合,未使用的处理器需要关闭以处理散热问题(即“暗硅”)。[4] 这些问题加上大量新设备、内存计算、高效的芯片间通信、3D 堆叠和集成技术