稀土发射器已在集成的光学源中研究了一段时间,作为激光源[1]和带有眼镜[2,3]或聚合物[4]的波导放大器。最近,它们被整合到互补的金属氧化物半导体(CMOS)驱动或兼容的SI光子芯片中,作为激光源[5],放大器[6,7]以及调节剂[8,9]。稀土发射器为开发新的主动光学功能的可能性提供了许多可能性,该功能最初集中于第四组[10]或III-V材料[11,12]。然而,需要在硅平台上的有效掺入(例如粘结[13],掩盖沉积[5,14],额外的层[15]或蚀刻[16,17],需要复杂的处理,这对实际应用可能是昂贵且有害的。尤其是Y 2 O 3和Al 2 O 3矩阵的情况,它需要电感耦合等离子体优化的蚀刻[18-20]。在这项工作中,我们提出了稀土掺杂层微发射体的创新设计,而无需使用升降加工与脉冲激光沉积(PLD)结合使用。在通过掩模(例如g。photoresist)的升降过程中,通过蚀刻的经典结构进行了蚀刻的经典结构,但在升降过程中,将材料与沉积的材料一起清除。这种方法比蚀刻更容易,避免沿蚀刻的侧壁潜在损害。尽管非常有吸引力,但提升过程的主要缺点之一是沉积过程中的底物温度。pld允许克服这种限制。升降处理是薄层图案(例如金属)或较厚层的微电子中常规的,具有低温沉积(如溅射)[21],原子层[22]或玻璃沉积[23]。的确,如果底物温度高于200°C(即光固定剂的硬烘烤温度),则提升处理不能成功。PLD是一种通常用于
金属添加剂制造中的摘要,移动的热源会导致温度和应变的空间和时间依赖性变化,从而导致部分变形。失真预测和优化的沉积参数可以提高生成的组件的尺寸精度。在这项研究中,通过实验验证了一种分析方法,用于建模覆盖高度和底物厚度的效果。此外,通过实验确定扫描模式与层高和底物厚度的函数的影响。分析模型基于凉爽的相位机理,并假定每个沉积层的恒定热收缩力的形成。与类似的实验条件相比,该模型可以准确预测实验校准后纵向悬臂失真。对于多层沉积,扫描模式对薄壁底物的失真影响最大。具有纵向扫描载体的优化沉积策略导致降低高达86%。结果强调了机械建模和扫描策略优化的潜力,以提高增材制造领域工业应用的形状准确性。
摘要:使用直接激光写入(激光诱导的石墨烯; LIG)合成的石墨烯材料,由于其较大的表面积,易于制造和成本效益而制成了有利的传感器材料。尤其是用金属纳米颗粒(NP)装饰的LIG已在各种传感器中使用,包括化学传感器以及电子和电化学生物传感器。但是,金属装饰对LIG传感器的影响仍然存在争议。基于计算模拟的假设并不总是与实验结果相匹配,甚至不同研究人员报告的实验结果也不一致。在本研究中,我们探索了金属装饰对LIG气体传感器的影响,分别为2和NH 3气体作为代表性的氧化和还原剂。为了消除金属盐残留物引起的不良副作用,金属NP通过真空蒸发直接沉积。尽管金属工作功能如何,但在金属装饰方面,传感器的气体敏感性会恶化,但在NH 3暴露的情况下,它们会改善金属装饰。对LIG传感器中金属NP的化学结构和形态进行了仔细的研究表明,具有低功函数的金属NP的自发氧化会改变LIG气体传感器的行为,并且在NO 2和NH 3中,传感器的行为遵循不同的原理。
标题急性腺病毒心脏感染在炎症性心肌重塑之前引起心律不齐的底物,并在心肌炎和隶属关系作者和隶属关系中,Rachel L. Padet 1,2,3,Grace A. Blair 1,2,3,1,2,3,Michael D. North 4,Michael J. Zeitz 2,3,Mira T. T. T. Taneneba s。 Hoeker 2,3,Sharon A. Swanger 2,4,5,Steven Poelzing 2,3,4,6,James W. Smyth 2,3,4,6,6,6,6 1美国4016年,美国弗吉尼亚州罗阿诺克市的FBRI心脏研究,美国4弗吉尼亚理工学院卡利翁医学院,罗阿诺克,弗吉尼亚州24016,美国5个生物医学科学与病理学系,弗吉尼亚 - 玛丽兰州兽医学院,弗吉尼亚州弗吉尼亚州科技学院,弗吉尼亚州弗吉尼亚州,弗吉尼亚州布莱克斯堡,弗吉尼亚州布莱克斯堡,弗吉尼亚州24061,弗吉尼亚州,美国弗吉尼亚州,弗吉尼亚州,弗吉尼亚州。 VA 24061,美国7生物科学系,弗吉尼亚理工学院,布莱克斯堡,弗吉尼亚州24061,美国,美国短名称心律失常腺病毒心脏感染,作者James W. Smyth,Fralin Biomedical Research Institute,VTC,VTC,2 Roanoke,Roanoke,Roanoke,Roanoke,Roanoke,VA 24016。电子邮件:smythj@vtc.vt.edu总词计数:9593
摘要:已证明介电纳米孔量可以避免与等离子装置相关的重型光损耗。但是,他们患有较少的共鸣。通过构建介电和金属材料的混合系统,可以保留低损失,同时实现更强的模式约束。在这里,我们使用高折射率多层透射金属二烷核酸WS 2在黄金上剥落,以制造并光学地表征杂交纳米天然基因的基因系统。我们在实验上观察了MIE共振,Fabry- perot模式和表面等离子体 - 果的杂种,从纳米antennas启动到底物。我们测量了杂交MIE-等离激元(MP)模式的实验质量因子,高达二氧化硅上纳米antennans中标准MIE共振的33倍。然后,我们调整纳米antena几何形状,以观察超级腔模式的特征,在实验中进一步增加了Q系数超过260。我们表明,在连续体中,这种准结合的状态是由于MIE共振与Fabry- perot质量模式在高阶Anapole条件附近的强烈耦合而产生的。我们进一步模拟了WS 2纳米antennas在黄金上,中间有5 nm厚的HBN垫片。通过将偶极子放置在该垫片中,我们计算出超过10 7的整体光提取增强,这是由于入射光的强,次波长限制引起的,Purcell因子超过700,并且发射光的高方向性高达50%。因此,我们表明多层TMD可用于实现简单制作的,混合的介电介质 - 现金纳米量纳米局部设备,允许访问高Q,强限制的MP共振,以及在TMD-金差距中发射器的大量增强。关键字:范德华材料,过渡金属二盐元化,纳米素化学,mie-等离激元共振,强耦合,连续体的结合状态,purcell Enhancement
2 法政大学 关键词:GaN-on-GaN、肖特基势垒二极管、均匀性、光致发光、功率器件 摘要 为了大规模生产 GaN-on-GaN 垂直功率器件,n 漂移层在 10 15 cm 3 范围内的净施主浓度 ND NA 的晶圆级均匀性是一个重要因素,因为它决定了击穿电压 VB 。在本研究中,我们通过控制 GaN 衬底的偏角展示了 GaN 肖特基势垒二极管晶圆级均匀性的改善。通过 MOVPE 在具有各种偏角和偏差的独立 GaN 衬底上生长外延结构。使用电容电压测量(C V)、光致发光(PL)和二次离子质谱(SIMS)仔细分析了 ND NA 的变化。与碳有关的NA变化导致了NDNA的不均匀性,而这与晶圆的衬底偏角有关。通过最小化偏角的变化可以提高NDNA的均匀性。引言在GaN衬底上制造的垂直结构GaN功率开关器件对于高效功率转换系统很有前景,因为这些器件提供极低的导通电阻(R on)和高击穿电压(VB)[1-3]。减少对器件成品率和可靠性致命的致命缺陷是一个重要问题。GaN-on-GaN二极管初始故障机理已有报道[4],其中具有外延坑的二极管在非常低的反向电压下表现出严重击穿。此外,最近有报道称表面粗糙度会影响可靠性[5]。在使用金属有机 (MO) 源引入碳 (C) 杂质时,n 漂移层中的净施主浓度必须控制在 10 15 cm3 范围内才能获得高 VB [6]。通过低施主含量,可以在负偏置条件下抑制 pn 或肖特基界面处的峰值电场 [7, 8]。然而,关于垂直 GaN-on-GaN 器件中净施主浓度的晶圆级均匀性的报道很少。
近年来,氮化镓 (GaN) 基高电子迁移率晶体管 (HEMT) 因其在降低开关损耗、维持高击穿电压以及保持高温稳定性方面所表现出的卓越性能,其商业化进程不断加快 [1,2]。大尺寸 Si 衬底上 GaN 外延生长技术的进步降低了生产成本。同时,Si 上的 HEMT 器件可以轻松集成到现有的 Si 铸造厂中 [4-6]。上述优势使 GaN 基 HEMT 器件更接近大众市场应用。阻挡层是 HEMT 器件中的关键元件之一,它决定了导电通道的电阻。AlGaN 是最常用的阻挡材料。在 AlGaN / GaN 界面区域形成的二维电子气 (2DEG) 表现出良好的稳定性、低的薄层电阻、高的载流子密度和高的电子迁移率 [7,8]。由于在 AlN / GaN 界面区域形成了更高的 2DEG 密度,AlN 作为阻挡层材料也引起了人们的关注 [9]。据报道,薄层电阻 (Rs) 值低至 128 Ω/sq,2DEG 密度为 3.21 × 10 13 / cm 2 [10]。此外,在 AlN 系统中可以避免合金散射,从而提高 2DEG 霍尔迁移率 [11,12]。已经证明了基于 AlN 阻挡层的 HEMT 器件具有低栅极漏电和高 I on / I off 比 [13]。表 1 总结了最近对具有最佳 Rs 性能的 AlN / GaN 异质结构的研究。然而,由于 AlN 与 GaN 沟道层的晶格失配较大 (2.5%),因此 AlN 的弛豫是一个主要挑战。氮化硅 (SiN x ) 帽层已被用作表面钝化层,以避免/减少 AlN 弛豫 [ 14 ] 。然而,钝化帽层的成分和厚度对抑制弛豫的影响很少被研究。在本文中,我们报告了包含原位生长的 GaN 和/或 SiN x 帽层的 AlN/GaN 异质结构的长期 2DEG 稳定性。
塑料具有多种机械和热性能,已成为世界各地现代生活中必不可少的产品 [1,2],这不仅是因为它们制造成本低、稳定性和耐用性,还因为它们用途广泛。由于这些优势,根据欧洲塑料协会 (Plastics Europe) 的报告,塑料产量自 20 世纪 50 年代以来一直在稳步上升,到 2020 年已达到 3.67 亿吨 [3,4]。制造的塑料大部分用于包装短寿命产品的瓶子和袋子,导致大量一次性塑料的消费,这些塑料很容易被丢弃 [4,5]。这些活动产生的大量塑料导致数百万公吨的塑料废物在环境和垃圾填埋场中堆积 [2,6,7],造成毁灭性的环境污染,影响生态系统、野生动植物和人类健康,此外还会产生废物管理问题 [2,4,5,8]。其中,在环境中污染和积累为固体废物的最常见塑料类型是聚对苯二甲酸乙二醇酯(PET)、聚丙烯(PP)、聚乙烯(LDPE-HDPE)、氯乙烯(PVC)、聚氨酯(PU)和
摘要:对齐的纳米纤维(例如碳纳米管(CNT))的出色固有特性,以及它们易于形成成多功能的3D体系结构的能力,激励它们用于各种商业应用的使用,例如电池,用于环境监测的化学传感器以及能源监测和节能式载体。在控制对生长底物的纳米纤维粘附对于批量制造和设备性能是必不可少的,但迄今为止的实验方法和模型尚未解决CNT阵列 - 底物 - 底物粘附强度在热处理条件下。在这项工作中,可轻松的“一锅”热后生成处理(在温度下t p = 700 - 950°C)用于研究CNT-底物 - 底物提取强度,用于毫米高的对准CNT阵列。CNT阵列通过拉伸测试从平坦生长基板(Fe /Al 2 O 3 /SiO 2 /Si Wafers)中取出,表明该阵列逐渐失败,类似于脆性微生物束的响应。在三个方案中,引进强度与T P非单调地演变,首先由于在CNT-catalyst界面上对无序碳的石墨化而首先增加10次,直至t p = 800°C,然后由于Fe催化为catly catalyst扩散到950°C而降低到弱界面,从而降低到弱界面,并降低了sudtration substration substration substrate and 2 o cystration and 2 o 3 cystration and 2 o 3 cystratization。失败发生在750°C以下的CNT-催化剂界面处发生,并且CNT在较高的T P加工后拉出期间自身破裂,在基板上留下了残留的CNT。形态学和化学分析表明,在所有制度中,Fe催化剂在撤离后仍保留在底物上。这项工作提供了对负责纳米纤维 - 底物粘附的界面相互作用的新见解,并允许调谐增加或降低应用程序的阵列强度,例如高级传感器,能量设备和纳米机电系统(NEMS)。关键字:碳纳米管,粘附,热处理,机械性能,界面行为,扫描传输电子显微镜■简介
摘要使用带有电热模型的TCAD-Santaurus工具设计和优化了基于GAN纳米线的新垂直晶体管结构。具有准1D漂移区域的研究结构适用于在高度N掺杂的硅底物上与自下而上方法合成的GAN纳米线。对电性能的研究是各种Epi结构参数的函数,包括区域长度和掺杂水平,纳米线直径以及表面状态的影响。结果表明,优化的结构具有正常的阈值模式,其阈值电压高于0.8 V,并且表现出最小化的泄漏电流,州电阻较低,并且最大化的击穿电压。据我们所知,这是对基于GAN的纳米晶体管的首次详尽研究,为科学界提供了宝贵的见解,并有助于更深入地了解GAN NANOWIRE参数对设备性能的影响。据我们所知,这是对基于GAN的纳米晶体管的首次详尽研究,为科学界提供了宝贵的见解,并有助于更深入地了解GAN NANOWIRE参数对设备性能的影响。