1。科特大学阿祖尔大学,伊特里亚,2004年路线des lucioles bp 93,06902索菲亚·安蒂波利斯·塞德克斯(Sophia antipolis Cedex),法国2。固定州物理研究所,纳维·格拉兹(Nawi Graz),格拉兹技术大学,奥地利格拉兹8010,3。科学与技术系,林克普大学,601 74诺尔科平 *通讯作者:francesco.greco@tugraz.at关键字:临时纹身,可穿戴,可穿戴,可符合的电子学,表皮设备,在各种技术中的表皮领域摘要,以及各种方法。 在这里,临时纹身纸被用作非常规底物来构建可转移的身体符合身体的设备,该设备与皮肤建立了稳定且持久的界面。 基于纹身的设备显示了它们在多个领域的功能,并在人类健康生物监测中进行了主要应用。 这种方法正在推进最先进的,克服了现有技术的某些限制,例如在皮肤接触电极和汗水分析的情况下。 临时纹身在其他田地也像有机太阳能电池的发展和可转移的可食用晶体管的发展一样。 已经证明了临时纹身的多种和互补的制造方法,从传统的真空沉积方法到各种印刷技术。 在这篇评论中,以及纹身技术的主要制造方法和应用的报告和讨论,我们描述了的主要特征科学与技术系,林克普大学,601 74诺尔科平 *通讯作者:francesco.greco@tugraz.at关键字:临时纹身,可穿戴,可穿戴,可符合的电子学,表皮设备,在各种技术中的表皮领域摘要,以及各种方法。 在这里,临时纹身纸被用作非常规底物来构建可转移的身体符合身体的设备,该设备与皮肤建立了稳定且持久的界面。 基于纹身的设备显示了它们在多个领域的功能,并在人类健康生物监测中进行了主要应用。 这种方法正在推进最先进的,克服了现有技术的某些限制,例如在皮肤接触电极和汗水分析的情况下。 临时纹身在其他田地也像有机太阳能电池的发展和可转移的可食用晶体管的发展一样。 已经证明了临时纹身的多种和互补的制造方法,从传统的真空沉积方法到各种印刷技术。 在这篇评论中,以及纹身技术的主要制造方法和应用的报告和讨论,我们描述了的主要特征科学与技术系,林克普大学,601 74诺尔科平 *通讯作者:francesco.greco@tugraz.at关键字:临时纹身,可穿戴,可穿戴,可符合的电子学,表皮设备,在各种技术中的表皮领域摘要,以及各种方法。在这里,临时纹身纸被用作非常规底物来构建可转移的身体符合身体的设备,该设备与皮肤建立了稳定且持久的界面。基于纹身的设备显示了它们在多个领域的功能,并在人类健康生物监测中进行了主要应用。这种方法正在推进最先进的,克服了现有技术的某些限制,例如在皮肤接触电极和汗水分析的情况下。临时纹身在其他田地也像有机太阳能电池的发展和可转移的可食用晶体管的发展一样。已经证明了临时纹身的多种和互补的制造方法,从传统的真空沉积方法到各种印刷技术。在这篇评论中,以及纹身技术的主要制造方法和应用的报告和讨论,我们描述了
可以很好地确定神经干细胞(NSC)命运受固体的强烈影响 - 例如细胞外基质(ECM)的特性,例如刚度。但是,脑ECM是粘弹性的,表现出固体(喜欢和流体)的质量。重要的是,粘弹性经常在疾病状态和衰老中发生变化,这提出了这些特性如何对这两个过程的贡献的问题。使用唯一的两个维粘弹性培养系统,我们发现ECM应力放松(例如属性)与刚度在确定NSC命运承诺中起着可比的作用。特别是ECM应力松弛驱动星形胶质细胞分化,这是由Rho GTPase RhoA动态激活介导的效果。我们的发现突出了将粘弹性纳入培养平台以控制干细胞分化的价值。
在本信中,我们介绍了基于五叠自组装 InAs/InAlGaAs 量子点作为活性介质的长波长微盘激光器,这些量子点通过固体源分子束外延在 InP(001)衬底上生长。直径为 8.4 lm 的量子点微盘激光器在脉冲光泵浦条件下在室温下工作。实现了 1.6 lm 的多波长激光发射,低激光阈值为 30 lm W,品质因数为 1336。通过收集到的近场强度分布的“S”形 L-L 曲线、线宽变窄效应和强散斑图案验证了激光行为。所展示的具有低阈值和超紧凑占地面积的长波长激光器可以在集成气体检测和高度局部化的无标记生物和生化传感中找到潜在的应用。
基于可用的GAAS,GAN或SIC半导体,对高功率电子设备的需求不断增长,能够在超过200°C的温度下连续运行[1-3]。这需要芯片到基底组装技术的必要变化以及对替代组装基板的研究。在如此高的连续操作温度下,不能使用SAC焊料和层压板底物。SAC焊料连续操作的限制是在150°C左右的温度,而不是最佳导热率:低于50 W/MK。在底物方面,正在研究带有Cu,Ag,Au或Ni安装金属化的陶瓷底物。这些要求在过去十年[4-7]中对其他组装技术(例如基于Ag糊的烧结或滑动(固体液体互化)技术)的兴趣日益增长[4-7]。基于糊状的烧结技术正在变得重要。通过正确调整温度和烧结时间以及接触压力,具有非常好的粘附,导热率和可靠性的接触压力。经典的烧结过程可以在200°C至300°C的温度下进行,范围从10 MPa到40 MPa。键合过程的参数取决于糊剂中Ag粉末粒的大小和形状,添加剂以防止结块和使用的溶剂[8]。
本文提出了新的实验和数值方法,以表征环氧聚合物底物的转移过量。我们研究了陶瓷面板上的多芯片模块以及封装为模具阵列包装(MAP)的印刷电路板上。实验表明,在过度过度过程中的聚合物流量显着取决于霉菌的高度:虽然标准的地图型霉菌腔均匀地填充,并且在大多数情况下,在大多数情况下,低空腔高度(<500 l m)可以导致前部的流量集中在几个流动路径上(forling parsssssssssssssssssssssspersifecifecte)。我们开发了一种数字方法来描述这种不均匀的聚合物流。流动前填充的原因似乎是聚合物粘度的局部变化,可在不同的流路径上强制颈部。指法会导致空气陷阱的形成和过多的电线。我们还开发了新的实验方法来测量腔内的压力分布:我们的传感器基于Fujufilm的市售,具有压力敏感的薄膜,并且在最高180的温度下运行。2010 Elsevier Ltd.保留所有权利。
摘要:单壁碳纳米管(SWCNT)和底物之间的界面热电导很少被表征和理解,这是由于在探测跨这样的NM范围接触的能量传输方面的重大挑战。在这里,我们报告了<6 nm厚的SWCNT束和Si底物之间的界面热电导。用于测量能量传输状态分辨的拉曼,其中拉曼频谱在连续波(CW)下变化,并测量20 ns脉冲激光加热,用于在稳定和短暂的热传导下通过界面热导电持续的稳定和短暂热传导的热响应。由于样品的激光吸收和温度升高不需要知识,因此测量可以实现极端的能力和置信度。在SWCNT束的三个位置中,测量界面热电阻为(2.98±0.22)×10 3,(3.01±0.23)×10 3,以及(1.67±0.27)×10 3 K M W - 1,对应于范围内的热电导率(3.3-3-6.0-×10)。我们的分析表明,SWCNT束和SI基板之间的接触松散,这主要归因于样品的明显不均匀性,这是通过原子力显微镜和拉曼光谱法解决的。对于假定的接触宽度约为1 nm,界面热电阻的阶将为10-6 W m-2 k-1,与报告的机械去角质石墨烯和二维(2D)材料一致。
β -氧化镓(β -Ga 2 O 3 )的带隙约为4.9 eV [ 1 ],作为一种新兴的超宽带隙半导体,近年来得到了广泛的研究。由于其具有成熟的块体材料制备、优异的Baliga 品质因数和高电子迁移率等优点[ 2 ],β -Ga 2 O 3 被认为是一种很有前途的日盲紫外(UV)光电探测器、气体传感器、紫外透明导体和大功率电子器件的候选材料[ 3 ,4 ]。虽然块体β -Ga 2 O 3 是外延生长高质量β -Ga 2 O 3 薄膜的理想衬底,但其昂贵的成本和较差的热导率仍然阻碍了同质外延的商业化。因此,在低成本、大尺寸衬底上异质外延β -Ga 2 O 3 薄膜仍然具有重要意义。
摘要:ATLAS 和 CMS 实验预测高亮度大型强子对撞机(HL-LHC)最内层像素探测器的辐射注量高达 1 × 10 16 1 MeV n eq /cm 2。辐射剂量的增加将导致探测器性能下降,例如漏电流和完全耗尽电压增加,信号和电荷收集效率降低,这意味着有必要开发用于甚高亮度对撞机的抗辐射半导体器件。在我们前期对超快三维沟槽电极硅探测器的研究中,通过模拟不同最小电离粒子(MIP)撞击位置下的感应瞬态电流,验证了从 30 ps 到 140 ps 的超快响应时间。本工作将利用专业软件有限元技术计算机辅助设计(TCAD)软件框架,模拟计算探测器在不同辐射剂量下的全耗尽电压、击穿电压、漏电流、电容、加权场和MIP感应瞬态电流(信号)。通过分析模拟结果,可以预测探测器在重辐射环境下的性能。像素探测器的制作将在中国科学院微电子研究所的CMOS工艺平台上进行,采用超纯高电阻率(高达10 4 ohm·cm)硅材料。
摘要 — 本文报道了一种三通道、非连续、流形多路复用器,工作频率为 220 至 330 GHz,工作带宽为 40%。该结构采用一组脊状基片集成波导 (SIW) 进行设计和实现。与传统 SIW 设计相比,脊状 SIW 提高了阻带带宽,并将整体结构尺寸缩小了 35%。三工器采用英特尔开发的有机封装基板技术,具有四层厚铜金属层和连续沟槽通孔代替标准通孔围栏,可显著降低脊状 SIW 波导的欧姆损耗。在三工器结构的开发中采用了电磁电路建模和协同设计技术。使用带状毫米波晶圆探测测量制造的三工器,通带中的插入损耗为 3 ∼ 7 dB,每个通道滤波器的平均回波损耗优于 10 dB。测得的三个通道的阻带衰减均优于 27 dB。
摘要 — 本文报道了一种三通道、非连续、流形多路复用器,工作频率为 220 至 330 GHz,工作带宽为 40%。该结构采用一组脊状基片集成波导 (SIW) 进行设计和实现。与传统 SIW 设计相比,脊状 SIW 提高了阻带带宽,并将整体结构尺寸缩小了 35%。三工器采用英特尔开发的有机封装基板技术,具有四层厚铜金属层和连续沟槽通孔代替标准通孔围栏,可显著降低脊状 SIW 波导的欧姆损耗。在三工器结构的开发中采用了电磁电路建模和协同设计技术。使用带状毫米波晶圆探测测量制造的三工器,通带中的插入损耗为 3 ∼ 7 dB,每个通道滤波器的平均回波损耗优于 10 dB。测得的三个通道的阻带衰减均优于 27 dB。