SK 集团将在佐治亚州科文顿建立首家基于玻璃的半导体部件合资企业(Absolics)与 GT-PRC 的互动 州长 Brian P. Kemp 宣布(佐治亚州亚特兰大 – 2021 年 10 月 28 日) 公司将在这个前所未有的合资企业中投资超过 4.73 亿美元,并将在牛顿县创造 400 多个新工作岗位 2022 年 11 月动工 2024 年产量最低;2025 年产量最高
高抗性(HR)硅在胰上石(SOI)底物,具有富含陷阱的(TR)层(图。1(a))广泛用于RF芯片。富含陷阱的层是一种捕获自由载体并因此消除盒子基底界面处的寄生通道的多层膜,使底物能够保留其高标称电阻率,从而导致较低的损失并改善线性性[1,2]。然而,捕集层中的部分结晶和杂质污染会影响局部电阻率,因此,RF性能[3]。为了解决这些问题,Uclouvain和Soitec提出了一种名为Double-Buried-Oxide(D-Box)TR底物的新结构,如图1(b)[4]。该结构在TR层下方结合了第二个薄氧化物(Box2),以防止TR层和硅基板之间的直接接触。在本文中,我们通过电容 - 电压(C-V)测量来表征D框结构。Box2的存在消除了整体耗竭层对C-V性能的影响,从而简化了分析。D-box结构还可以在晶圆级别表征TR层。
摘要:我们研究了电致多气体改性 (EIMGM) 持续时间对印刷行业中使用的 PET 和 LDPE 聚合物基材的附着力和耐磨性的影响。研究发现,EIMGM 使 LDPE 的极性成分和完全自由表面能从 26 增加到 57 mJ/m 2,使 PET 的完全自由表面能从 37 增加到 67 mJ/m 2(由于材料表面形成了含氧基团)。尽管改性 LDPE 的纹理和形态异质性程度与初始状态相比增加了两倍以上,但它仍然不适合用作挤出 3D 打印的基材。然而,对于 PET,等离子体化学改性导致细丝对其表面的附着力显著增加(约 5 倍)(由于表面层的化学和形态转变),从而允许使用 FFF 技术在改性 PET 基材上进行增材原型制作。
摘要:对于胶体纳米量结构,转移电子显微镜(TEM)网格已被广泛用作暗场显微镜的底物,因为纳米尺度的特征可以通过在暗场显微镜研究后通过TEM成像有效地确定。但是,在常规TEM网格中实现了光学上有损的碳层。从TEM网格边缘的宽带散射进一步限制了可访问的信噪比。在这里,我们认为自由悬浮,超薄和广泛的透明纳米膜可以应对此类挑战。我们开发了1 mm x600μm的比例和20 nm厚的聚(乙烯基形式)纳米膜,其面积比传统的TEM网格宽约180倍,因此有效排除了网格边缘的可能的宽带散射。另外,可以在没有碳支持的情况下形成这种纳米膜;使我们能够达到其他基材中散射的最高信噪比。关键字:暗场光谱,纳米光学,等离子体,MIE散射,纳米粒子
摘要:由于牛奶乳清是一种丰富的乳制品副产品,并且对环境有重大威胁,因此其利用引起了极大的兴趣。这项研究比较了乳糖和乳酸(通过发酵)的乳糖和乳酸的价值(乳清的主要碳来源)。食品级细菌在发酵过程中释放的抗菌作用可以帮助提高食物的微生物安全性。丙酸 - 一种强的抗菌剂 - 主要是通过石化途径获得的,但对其在生物技术途径中的合成越来越兴趣。五株丙酸细菌(酸性核酸杆菌,酸性杆菌,环己丙己省丙糖酸,弗洛德尼丙肽杆菌,酸性核酸杆菌,Jensenii酸性杆菌,Jensenii和使用酸性的酸性酸杆菌的能力),并产生了酸性的酸性,并产生了有机酸酯的能力。碳源。在用食源性病原体研究期间,研究了选定的发酵液的抗菌效率:大肠杆菌,克雷伯氏菌肺炎,铜绿假单胞菌,铜绿假单胞菌,枯草芽孢杆菌,枯草菌和葡萄球菌aureus。结果证实,酸和生物量的产生对添加的碳源影响很大。测试的发酵液具有针对铜绿假单胞菌,枯草芽孢杆菌和金黄色葡萄球菌的强大抗小体活性。此外,抑制金黄色葡萄球菌和肺炎肺炎的抑制取决于产生的细菌素的活性。本文还讨论了通过酸性提高发酵物抗菌活性的可能性。
传统透明导电氧化物 (TCO) 的技术策略是采用简并掺杂宽带隙半导体来实现两个关键特性:电导率和光学透明度。宽带隙半导体被选为主体材料,其带间跃迁高于可见光谱,而掺杂剂则增加载流子密度,从而提高电导率。锡掺杂氧化铟 (ITO) 因其在可见光谱中实现了高电导率和光学透明度的最佳平衡而得到广泛应用。[3] 然而,由于铟矿的供应有限,ITO 用作 TCO 的使用越来越多,导致 ITO 成本上升。[4] 同时,许多其他应用,如日盲探测、紫外 (UV) 光刻、紫外发光二极管和紫外固化,都需要紫外光谱中的透明导体。[5–8] 然而,传统的高电导率 TCO 在光谱的紫外侧表现出低透射率。 [1]
过去十年,钙钛矿 (HP) 因其在光伏 (PV) 和发光二极管 (LED) 领域的优异光电特性而备受关注。1、2 其中,基于钙钛矿的发光二极管 (PeLED) 显示出超过 20% 的外部量子效率 (EQE)。3、4 最近,大量的研究集中在无铅 HP,主要是在 PV 中,作为解决毒性问题最有前途的策略。然而,无铅 PeLED 的开发受到的关注较少,主要是因为与含铅 PeLED 相比,它们固有的稳定性较低。因此,开发采用工业友好型技术制造的无铅 PeLED 是该领域的一个重要里程碑。3D HP 具有低激子结合能,使用低维结构(如 2D HP)是制造 PeLED 的首选。 5、6 与无铅 HP PV 的情况一样,Sn-HP 是开发 PeLED 最有希望的家族。尽管如此,尽管在性能(EQE 和亮度)方面取得了长足的进步,3、7、8 Sn 2+ 在其氧化状态下容易在环境条件下发生氧化,形成四价态 Sn 4+ 。这一事实导致了 ap 型自掺杂过程,留下不需要的 Sn 2+ 空位,这些空位充当非辐射复合中心,从而猝灭了钙钛矿发射。已经提出了几种方法和努力来克服 Sn 2+ 氧化。9 一些研究证实 SnF 2 是一种广泛用作太阳能电池中 Sn 补偿剂的添加剂,10、11 引入 Cl 掺杂,10 或使用适量的金属锡。10 使用 NaBH 4
摘要 — 本文报道了一种三通道、非连续、流形多路复用器,工作频率为 220 至 330 GHz,工作带宽为 40%。该结构采用一组脊状基片集成波导 (SIW) 进行设计和实现。与传统 SIW 设计相比,脊状 SIW 提高了阻带带宽,并将整体结构尺寸缩小了 35%。三工器采用英特尔开发的有机封装基板技术,具有四层厚铜金属层和连续沟槽通孔代替标准通孔围栏,可显著降低脊状 SIW 波导的欧姆损耗。在三工器结构的开发中采用了电磁电路建模和协同设计技术。使用带状毫米波晶圆探测测量制造的三工器,通带中的插入损耗为 3 ∼ 7 dB,每个通道滤波器的平均回波损耗优于 10 dB。测得的三个通道的阻带衰减均优于 27 dB。
摘要:由于其良好的材料特性(例如耐腐蚀、耐磨、生物相容性),聚酰胺 12(PA12)等热塑性材料因可用作金属部件上的功能涂层而备受关注。为确保涂层的空间分辨力并缩短工艺链,通过激光束(DED-LB/P)进行聚合物粉末的定向能量沉积是一种很有前途的方法。由于特征吸收带,在 DED-LB/P 装置中使用波长为 1.94 µ m 的铥光纤激光器进行研究,以在无需添加任何吸收添加剂的情况下在不锈钢基材上生成 PA12 涂层。通过红外热成像分析了能量密度和粉末质量流量的影响。此外,还通过差示扫描量热法、激光扫描显微镜、光学显微镜和交叉切割测试对涂层进行了表征。本研究结果首次证明了使用铥光纤激光器实现无吸收体 DED-LB/P 工艺的基本可行性。可实现孔隙率低、附着力好的 PA12 涂层。根据特定应用的要求,必须在 PA12 涂层的密度和表面质量之间进行权衡。使用红外热成像技术适用于现场检测因能量输入过多而导致的工艺不稳定性。