根据面部感知的经典观点( Bruce and Young, 1986 ; Haxby et al., 2000 ),面部身份和面部表情识别由不同的神经基质(分别为腹侧和外侧颞叶面部选择区域)执行。然而,最近的研究挑战了这一观点,表明表达效价也可以从腹侧区域解码( Skerry and Saxe, 2014 ; Li et al., 2019 ),身份也可以从外侧区域解码( Anzellotti and Caramazza, 2017 )。如果专门负责一项任务(身份或表情)的区域包含另一项任务的少量信息(从而实现高于机会的解码),则这些发现可以与经典观点相一致。在这种情况下,我们预计侧面区域的表征与经过训练以识别面部表情的深度卷积神经网络 (DCNN) 中的表征更相似,而不是经过训练以识别面部身份的 DCNN 中的表征(对于腹侧区域,情况应该相反)。我们通过分析对不同身份和表情的面部的神经反应来检验这一假设。将从人类颅内记录(n = 11 名成年人;7 名女性)计算得出的表征相异矩阵 (RDM) 与经过训练以标记身份或表情的 DCNN 的 RDM 进行了比较。我们发现,在所有测试区域中,经过训练以识别身份的 DCNN 的 RDM 与颅内记录的相关性更强——即使在传统上假设专门用于表情的区域也是如此。这些结果偏离了传统观点,表明面部选择性腹侧和侧面区域有助于身份和表情的表征。
摘要 — 电源模块中的直接键合铜 (DBC) 等基板需要承受足够高的绝缘电压,以提供半导体芯片和冷却系统之间的隔离。当电场超过绝缘材料的临界介电强度时,就会发生局部放电 (PD),并且它通常是电源模块中的关键退化指标。确保在中高压电源模块封装中没有基板 PD 更具挑战性。与简单地增加单个基板绝缘层的厚度相比,堆叠多个基板似乎是实现高绝缘电压的一种有前途的解决方案。本文研究了堆叠基板的 PD 性能,并提出了在堆叠基板中采用图案化中间层以进一步提高绝缘电压。优化了堆叠基板的金属化之间的偏移量,以实现电场和热阻之间的权衡。基于中间层图案化堆叠基板设计开发了10 kV SiC 功率模块,并通过高达 12.8 kVrms 的 PD 测试验证,与传统堆叠基板相比,最大电场降低了 33%。
agil.chung@sksiltron.com、bcharles.lee@sksiltron.com、candrey.soukhojak@sksiltron.com、dtawhid.rana@sksiltron.com agil.chung@sksiltron.com、bcharles.lee@sksiltron.com、candrey.soukhojak@sksiltron.com、dtawhid.rana@sksiltron.com agil.chung@sksiltron.com、bcharles.lee@sksiltron.com、candrey.soukhojak@sksiltron.com、dtawhid.rana@sksiltron.com agil.chung@sksiltron.com、bcharles.lee@sksiltron.com、candrey.soukhojak@sksiltron.com、dtawhid.rana@sksiltron.com agil.chung@sksiltron.com, bcharles.lee@sksiltron.com, candrey.soukhojak@sksiltron.com、dtawhid.rana@sksiltron.com agil.chung@sksiltron.com、bcharles.lee@sksiltron.com、candrey.soukhojak@sksiltron.com、dtawhid.rana@sksiltron.com agil.chung@sksiltron.com、bcharles.lee@sksiltron.com、 candrey.soukhojak@sksiltron.com、dtawhid.rana@sksiltron.com agil.chung@sksiltron.com、bcharles.lee@sksiltron.com、candrey.soukhojak@sksiltron.com、dtawhid.rana@sksiltron.com agil.chung@sksiltron.com、bcharles.lee@sksiltron.com、 candrey.soukhojak@sksiltron.com, dtawhid.rana@sksiltron.com agil.chung@sksiltron.com、bcharles.lee@sksiltron.com、candrey.soukhojak@sksiltron.com、dtawhid.rana@sksiltron.com agil.chung@sksiltron.com、bcharles.lee@sksiltron.com、candrey.soukhojak@sksiltron.com、 dtawhid.rana@sksiltron.com
D#<&#%/。)G! (*(#)'!*+!。)#&'。%a!是的! &#/:4'。)g!%44% )%'#/! x; & - 。 1! <& - 。 1! =& - 。 y1! 。 ! k! 61! p1! > 1! P-#&#! >! ./!D#<&#%/。)G! (*(#)'!*+!。)#&'。%a!是的! &#/:4'。)g!%44%)%'#/! x; & - 。1!<& - 。1!=& - 。y1!。! k! 61! p1!> 1! P-#&#! >! ./!> 1! P-#&#!>! ./!>! ./!
摘要 — 展示了 SiC 衬底上的外延 AlN 薄膜体声波谐振器 (FBAR),其一阶厚度扩展模式为 15-17 GHz。对于 15 GHz epi-AlN FBAR,其品质因数 Q max ≈ 443、机电耦合系数 k 2 eff ≈ 2 . 3 % 和 f · Q ≈ 6 . 65 THz 品质因数在 Ku 波段 (12-18 GHz) 中名列前茅。具有高品质因数的干净主模式使此类 epi-AlN FBAR 可用于具有干净频带和陡峭抑制的 Ku 波段声波滤波器。由于这种外延 AlN FBAR 与 AlN/GaN/AlN 量子阱高电子迁移率晶体管 (QW HEMT) 共享相同的 SiC 衬底和外延生长,因此它们非常适合与 HEMT 低噪声放大器 (LNA) 和功率放大器 (PA) 进行单片集成。
我们知道这是一个雄心勃勃的议程,但如果信托基金要实现其三年战略,我们就必须取得成功。作为一个组织,实现这一目标需要投入资金和时间,但在该组织的支持下,我们期望看到员工团体对我们的数字化抱负更加热情和投入,并继续采用和利用我们先进的数字基础设施和系统,造福我们的患者和当地居民。
摘要:VDM合金780是一种新型的基于Ni的超合金,与Inconel 718相比,机械性能较大的机械性能较大,其工作温度较高约50℃。年龄可硬化的尼古拉合金结合了提高的温度强度与氧化耐药性,以及由于γ' - 沉淀而提高的微观结构稳定性。这些优点使其适用于可用于高温应用中的耐磨性和耐腐蚀涂料。但是,VDM合金780尚未足够研究激光金属沉积应用。进行了316升标本上单个轨道的实验设计,以评估过程参数对clad质量的影响。随后,通过破坏性和非破坏性测试方法评估了外壳的质量,以验证VDM Alloy 780对于激光金属沉积应用的适用性。单轨实验为涂料或添加剂制造应用提供了基础。用于传达结果,提出了带有回归线的散点图,这说明了特定能量密度对所得孔隙率,稀释,粉末效率,纵横比,宽度,宽度和高度的影响。最后,在孔隙率方面,包裹的质量通过每个单位长度质量不同的两个过程图可视化。
摘要:对齐的纳米纤维(例如碳纳米管(CNT))的出色固有特性,以及它们易于形成成多功能的3D体系结构的能力,激励它们用于各种商业应用的使用,例如电池,用于环境监测的化学传感器以及能源监测和节能式载体。在控制对生长底物的纳米纤维粘附对于批量制造和设备性能是必不可少的,但迄今为止的实验方法和模型尚未解决CNT阵列 - 底物 - 底物粘附强度在热处理条件下。在这项工作中,可轻松的“一锅”热后生成处理(在温度下t p = 700 - 950°C)用于研究CNT-底物 - 底物提取强度,用于毫米高的对准CNT阵列。CNT阵列通过拉伸测试从平坦生长基板(Fe /Al 2 O 3 /SiO 2 /Si Wafers)中取出,表明该阵列逐渐失败,类似于脆性微生物束的响应。在三个方案中,引进强度与T P非单调地演变,首先由于在CNT-catalyst界面上对无序碳的石墨化而首先增加10次,直至t p = 800°C,然后由于Fe催化为catly catalyst扩散到950°C而降低到弱界面,从而降低到弱界面,并降低了sudtration substration substration substrate and 2 o cystration and 2 o 3 cystration and 2 o 3 cystratization。失败发生在750°C以下的CNT-催化剂界面处发生,并且CNT在较高的T P加工后拉出期间自身破裂,在基板上留下了残留的CNT。形态学和化学分析表明,在所有制度中,Fe催化剂在撤离后仍保留在底物上。这项工作提供了对负责纳米纤维 - 底物粘附的界面相互作用的新见解,并允许调谐增加或降低应用程序的阵列强度,例如高级传感器,能量设备和纳米机电系统(NEMS)。关键字:碳纳米管,粘附,热处理,机械性能,界面行为,扫描传输电子显微镜■简介