本文解决了在实施同步混合语言教学时更好地了解互动不对称,挑战和解决方案的必要性。我们在高等教育教学环境中调查了视频记录的同伴互动,其中Stu Dent使用远程介绍机器人(一种可移动的视频会议工具),以与在语言课堂上的物理学生一起参加L2英语的小组任务工作。借鉴了多模式对话分析,我们研究了地理分散的同伴群体如何在完成任务时完成与任务相关的学习材料的共同关注,以及这种参考的互动互动工作如何使他们的合作作为一个小组。基于分析,我们认为在同步混合学习中,有必要反射性调整互动实践,以确保对学习任务及其促进性的主体间理解。该发现还表明,在开发和实施同步的混合学习环境时,应考虑感官和互动不对称的,无论参与模式如何,旨在旨在实现机会平等。
气候变化已成为人类生存的威胁,因此,按照 IPCC 的建议消除二氧化碳排放已成为世界各国的共同责任。这一责任是否会得到履行,谁也说不准。如果不这样做,除了可能出现的“人口调整”之外,还可能导致大规模的苦难。全球较贫穷的人口将首当其冲地承受这种影响。印度是人类最大的组成部分,必须尽快成为一个差距最小的发达国家,并通过适当的措施获得足够的资源来保护人口,同时我们努力实现到 2070 年实现净零排放的全球承诺。这反过来意味着,我们应该在为时已晚之前将人均收入/生活质量/人类发展指数 (HDI) 提高到至少与世界发达国家相当的水平。无论如何,将我们的发展提高到与世界发达国家相当的水平一直是我们的国家愿望。
摘要:本研究致力于创建一种实时算法,用于估计社交互动过程中的脑对脑同步,特别是在协作和竞争场景中。这种类型的算法可以在教育环境中提供有用的信息,例如在师生或学生与学生的互动中。本研究定位于神经教育和超扫描的背景下,解决了生物标记作为反馈指标的需求,这是当前教学方法中缺少的一个要素。该算法使用 Python 中的多处理函数实现双谱技术,有效地处理脑电图信号,并估计在(竞争和协作)活动期间(涉及特定认知过程)受试者之间的脑对脑同步。值得注意的差异,例如协作任务中的双谱值高于竞争任务中的双谱值,在可靠性方面表现出来,通过统计测试验证的显着结果占 33.75%。在承认进展的同时,本研究还确定了机会领域,包括嵌入式操作、更广泛的测试和改进的结果可视化。除了学术界,该算法的实用性还扩展到课堂、行业和任何涉及人际互动的场合。此外,所提出的算法是公开共享的,以方便其他研究人员实施,并且可以轻松调整到其他脑电图设备。这项研究不仅弥补了技术差距,还深入了解了互动在教育环境中的重要性。
摘要 — 本文介绍了一种用于网络连接微控制器边缘设备的 IEEE 1588 精确时间协议 (PTP) 的裸机实现,可在汽车网络和多媒体应用中实现亚微秒级时间同步。该实现利用微控制器 (MCU) 的硬件时间戳功能来实现两级锁相环 (PLL),以校正硬件时钟的偏移和漂移。使用 MCU 平台作为 PTP 主机,可通过网络分发亚微秒级精确的全球定位系统 (GPS) 计时信号。使用主从配置评估系统性能,其中平台与 GPS、嵌入式平台和微控制器主机同步。结果表明,MCU 平台可以通过网络与外部 GPS 参考同步,标准偏差为 40.7 纳秒,从而为各种应用中的裸机微控制器系统实现精确的时间同步。索引术语 —PTP、精确时间协议、微控制器、嵌入式系统、TSN、时间敏感网络
6 同步基础 1005 6.1 相位计算和再生 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1010 6.1.2.1 压控晶体振荡器(VCXO) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1031 6.5.3 搜索保护期或导频 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..........................................................................................................................................................................................................................1032 6.5.4.3 载波恢复 ....................................................................................................................................................1032. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ... 1036 6.6.2.2 升余弦频率滤波器系列 . . . . . . . . . . . . . . . . . . . . . . . 1039 6.6.2.3 频谱升余弦 (SRC) 频率滤波器系列 . . . . . . . . . . . . . . . . 1042
引言协作解决问题解决(CPS,以下称)已成为21世纪学习技能的重要特征,并且正在许多领域进行研究(Care等,2012)。CPS涉及两个或两个以上的人共同努力解决问题。这种能力已被认为是教育的关键目标(OECD,2017年)。研究表明,团队成员的CPS技能会影响协作的有效性(Andrews&Rapp,2015年)。具有至少一个具有高CPS技能的学生的小组表现出更好的学习表现(Andrews-Todd&Forsyth,2020年)。因此,已经激发了激励的努力来制定相关评估并激活教育改革以提高CPS的有效性(Stadler等,2020)。此外,教育从业人员特别强调需要建立远程合作技能(OECD,2017; Schulze&Krumm,2017),因为团队已经分配,随着家庭的教育或在家工作已成为规范。因此,如何设计,开发和实施在线CPS活动以改善在线CPS的有效性是当前CPS研究中最重要的主题之一。
摘要——准确记录人类或其他生物与其环境或其他媒介的相互作用需要通过多种仪器同步数据访问,这些仪器通常使用不同的时钟独立运行。主动的硬件介导解决方案通常不可行或成本过高,无法在任意输入系统集合中构建和运行。实验室流层 (LSL) 提供了一种基于软件的方法,用于根据每个样本的时间戳和跨公共 LAN 的时间同步来同步数据流。LSL 专为神经生理应用而构建,设计可靠,提供零配置功能并考虑网络延迟和抖动,从而实现连接恢复、偏移校正和抖动补偿。这些功能可确保精确、连续的数据记录,即使在遇到中断的情况下也是如此。截至 2024 年 2 月,LSL 生态系统已发展到支持 150 多个数据采集设备类,并与使用多种编程语言编写的客户端软件建立了互操作性,包括 C/C++、Python、MATLAB、Java、C#、JavaScript、Rust 和 Julia。 LSL 的弹性和多功能性使其成为多模态人类神经行为记录的主要数据同步平台,现在它得到了各种软件包的支持,包括主要的刺激呈现工具、实时分析包和脑机接口。除了基础科学、研究和开发之外,LSL 还被用作从艺术装置到舞台表演、互动体验和商业部署等场景中的弹性和透明后端。在神经行为研究和其他神经科学应用中,LSL 促进了使用公共时间基上的多个数据流捕获生物动态和环境变化的复杂任务,同时捕获每个数据帧的时间细节。
在虚拟现实(VR)研究领域,方法论进步,技术创新和新颖应用的协同作用至关重要。我们的工作在VR环境中进行的空间能力评估背景下封装了这些方面。本文提出了VR,眼睛跟踪和脑电图(EEG)的全面综合框架,该框架无缝地结合了测量参与者的行为性能,并同时收集时间戳记的眼球跟踪和EEG数据,以促进某些条件和增加这种态度的潜在影响,以使空间能力在某些条件和增加的范围内都受到影响和注意力的影响。该框架涵盖了参与者的凝视模式(例如固定和扫视),脑电图数据(例如Alpha,Beta,Gamma和Theta波模式)以及心理测试和行为测试的测试。在技术方面,我们利用Unity 3D游戏引擎作为通过模拟更改空间探索条件来运行空间能力任务的核心。我们模拟了两种类型的空间探索条件:(1)微重力条件,其中参与者的白痴(身体)轴静态和动态地与其视觉轴进行了错位; (2)火星地形的条件,提供视觉参考框架(用于)但有限且陌生的地标物体。我们特别针对人类的空间能力和空间感知。对于空间感知,我们应用了大小和距离感知测试的数字化版本来衡量参与者对大小和距离的主观感知。To assess spatial ability, we digitalized behav- ioral tests of Purdue Spatial Visualization Test: Rotations (PSVT: R), the Mental Cutting Test (MCT), and the Perspective Taking Ability (PTA) test and integrated them into the VR settings to evaluate participants' spatial visualization, spatial relations, and spatial orientation abil- ity, respectively.C#脚本的套件策划了VR体验,实现了实时数据收集和同步。这项技术创新包括从不同来源的数据流(例如Vive控制器,远射设备和EEG硬件)集成,以确保具有凝聚力和全面的数据集。我们的研究中的一个关键挑战是同步来自脑电图,眼睛跟踪和VR任务的数据,以促进全面的分析。为了应对这一挑战,我们采用了Opensync库的统一接口,该工具旨在统一心理学和神经科学领域中不同的数据源。这种方法可确保所有收集的措施共同参考,从而对参与者绩效,凝视行为和脑电图活动有意义分析。基于统一的系统无缝地包含任务参数,参与者数据和VIVE控制器输入,提供了一个多功能平台,用于在不同域中进行评估。
摘要 - 在本文中,开发了一种自适应轨迹同步控制器,该控制器是在机器人模型参数(包括非线性参数摩擦术语)中的通信时间延迟和不确定性的情况下将机器人关节轨迹同步到人类关节轨迹的。通过解释人类机器人协作任务中出现的时间延迟,例如,使用图像处理估算人类轨迹或传感器融合以进行轨迹意图估计或计算限制,将控制器同步到人类轨迹。开发的自适应时间延迟同步控制器采用了新的积分并发学习(ICL)基于基于神经网络参数估计的参数更新定律。使用Lyapunov-Krasovskii函数分析证明了同步和参数估计误差的最终有界稳定性。使用人类机器人同步示例提出了蒙特卡洛模拟的结果,以验证所提出的同步控制器的性能。使用人类机器人同步示例提出了蒙特卡洛模拟的结果,以验证所提出的同步控制器的性能。
婴儿刺激会在人类成年人中引起广泛的神经和行为反应,如此大规模的资源分配证明了原始依恋的进化意义。在这里,我们检查了依恋提醒是否也会触发跨脑一致性并产生更大的神经一致性,如受试者间相关性所示。在催产素/安慰剂给药设计中,人类母亲被拍摄两次,刺激包括四个标准的陌生母亲和婴儿的生态视频:两个婴儿/母亲独自一人(独自一人)和两个母亲 - 婴儿二元环境(社交)。理论驱动的分析测量了父母照顾网络(PCN)预注册节点的跨脑同步性,该网络将支撑哺乳动物母性的皮层下结构与与模拟、心理化和情绪调节有关的皮层区域整合在一起,数据驱动的分析使用全脑分区评估全脑一致性。结果表明,PCN 和神经轴存在广泛的跨脑同步,从初级感觉/躯体感觉区域到岛叶扣带区,再到颞叶和前额叶皮质。社交背景产生了明显更多的跨脑一致性,PCN 纹状体、海马旁回、颞上沟、ACC 和 PFC 仅在母婴社交线索下显示跨脑同步。母婴社交同步的即时波动,从低同步性发作到紧密协调的积极发作,都通过预先注册的 ACC 中的跨脑一致性在线跟踪。研究结果表明,社会依恋刺激代表着进化过程中显著的普遍线索,不需要口头叙述,能够引发大量的大脑间一致性,并表明母婴关系是人类文明的核心标志,可能起到将大脑粘合成统一的体验并将人类束缚在社会群体中的作用。