Sohrab Aftabjahani,英特尔 Ameen Akel,美光 Robert Boland,BAE 系统 Jeff Burns,IBM* Rosario Cammarota,高通* Jon Candelaria,SRC Gary Carpenter,ARM C.-P. Chang,应用材料 An Chen,IBM* Ching-Tzu Chen,IBM* Michael Chen,Mentor Graphics Paula Collins,德州仪器 Ken Curewitz,美光 Scott DeBoer,美光 Robert Doering,德州仪器 Sean Eilert,美光 Rich Fackenthal,美光 Mike Fitelson,诺斯罗普·格鲁曼 Patrick Groeneveld – 新思科技 James Hannon,IBM* Ken Hansen,SRC Daryl Hatano,安森美半导体 C.-M. Hung,联发科 David Isaacs,SIA Clas Jacobson,联合技术公司 Steve Johnston,英特尔 Lisa Jones,诺斯罗普·格鲁曼公司 Marc Joye,恩智浦 Ravi Kanjolia,EMD Performance Materials Thomas Kazior,雷神公司 Taffy Kingscott,IBM Curt Kolovson,VMWare Steve Kramer,美光* Zoran Krivokapic,格罗方德半导体 Ming-Ren Lin,格罗方德半导体* Yu-Ming Lin,台积电 Scott List,SRC
诺斯罗普·格鲁曼公司 罗伯特·豪厄尔 马修·多弗莱因·雷卡·雷迪 大卫·沙欣 纽约创建 保罗·凯利 约翰·亚科波尼 詹姆斯·特维 大卫·哈拉梅 普渡大学 加内什·苏巴拉扬 卡罗尔·汉德沃克 特里萨·梅尔 伦斯勒理工学院 罗伯特·赫尔 詹姆斯·J.-Q. Lu Daniel Gall SCREEN 半导体解决方案有限公司 Paul Farrar Jr. Ian Brown SEMI Bettina Weiss Melissa Grupen-Shemansky Shari Liss David Anderson 半导体研究公司 Todd Younkin David Henshall 西门子 EDA Richard Powlowsky SkyWater Technology Brad Ferguson Dan Rakosky Kirk Peterson John Cooney 州立大学纽约 F. Shadi Shahedipour-Sandvik Nathaniel Cady Nicholas Querques Robert Geer Synopsys Inc. Mike O'Brien Scott Bukofsky TechSearch International Jan Vardaman 德州仪器 Jim Wieser Sameer Pendharkar Hannah Izon 东京电子有限公司 Sitaram Arkalgud Alex Oscilowski
诺斯罗普·格鲁曼公司 罗伯特·豪厄尔 马修·多尔弗莱因 雷卡·雷迪 大卫·沙欣 纽约创建 保罗·凯利 约翰·亚科波尼 詹姆斯·特维 大卫·哈拉米 普渡大学 加内什·苏巴拉扬 卡罗尔·汉德沃克 特里萨·梅耶尔 伦斯勒理工学院 罗伯特·赫尔 詹姆斯·J.-Q. Lu Daniel Gall SCREEN 半导体解决方案有限公司 Paul Farrar Jr. Ian Brown SEMI Bettina Weiss Melissa Grupen-Shemansky Shari Liss David Anderson 半导体研究公司 Todd Younkin David Henshall 西门子 EDA Richard Powlowsky SkyWater Technology Brad Ferguson Dan Rakosky Kirk Peterson John Cooney 纽约州立大学 F. Shadi Shahedipour-Sandvik Nathaniel Cady Nicholas Querques Robert Geer Synopsys Inc. Mike O'Brien Scott Bukofsky TechSearch International Jan Vardaman 德州仪器 Jim Wieser Sameer Pendharkar Hannah Izon 东京电子有限公司 Sitaram Arkalgud Alex Oscilowski
摘要 本文的目的是使用逻辑门和 CMOS 逻辑设计一个 16:1 多路复用器。在本研究中,我们研究了 16:1MUX 的延迟和功率调制。这表明 CMOS 技术处于领先地位,因为它使用的晶体管数量更少、电容更少、速度更快。在本研究中,我们进行了比较工作并得到了模拟结果,结果说明了 CMOS 逻辑设计的优越性,并且功耗和延迟非常低。使用 Synopsys 工具 HSPICE 在 32 nm BSIM 4 模型卡下对 PTM 模型的块状 CMOS 技术进行了模拟,并检查了不同电压下的结果。最小和最大延迟和功耗结果分别为 68.82ps、92.16ps 和 103.96µW、1471.4µW。我们在多路复用器中获得的总晶体管数量为 282,这是模拟的,我们使用名为 HSPICE 的高级工具获得了 MUX 的输出波形,它们在结果部分中表示出来。关键词:多路复用器、2×1 多路复用器、4×1 多路复用器、8×1 多路复用器、16×1 多路复用器、延迟、功耗
研究生院杰出论文奖UT Austin 2024 DAC博士第三名。 Forum DAC 2023 MLSys Student Travel Award MLSys 2023 Margarida Jacome Dissertation Prize UT Austin 2023 Winner at Robert S. Hilbert Memorial Optical Design Competition Synopsys 2022 Donald O. Pederson Best Paper Award IEEE TCAD 2021 Cockrell School Graduate Student Fellowship UT Austin 2021 First Place at ACM Student Research Competition Grand Finals ACM 2021 Best Poster Award at NSF Workshop on Machine Learning Hardware NSF Workshop 2020 First Place at ACM/SIGDA Student Research Competition ACM/SIGDA 2020 7th Place at IWLS Contest on Machine Learning+Logic Synthesis IWLS 2020 DAC Young Fellow DAC 2020,2021 Best Paper Finalist (1 out of 6) DAC 2020 Best Paper Award ASP-DAC 2020 4th Place, System Design Contest on Low Power Object Detection DAC-SDC 2019 First奖学金奖学金Fudan University 2017–2018第二奖和第三奖,国家数学竞赛2016 - 2017年模型研究生院杰出论文奖UT Austin 2024 DAC博士第三名。 Forum DAC 2023 MLSys Student Travel Award MLSys 2023 Margarida Jacome Dissertation Prize UT Austin 2023 Winner at Robert S. Hilbert Memorial Optical Design Competition Synopsys 2022 Donald O. Pederson Best Paper Award IEEE TCAD 2021 Cockrell School Graduate Student Fellowship UT Austin 2021 First Place at ACM Student Research Competition Grand Finals ACM 2021 Best Poster Award at NSF Workshop on Machine Learning Hardware NSF Workshop 2020 First Place at ACM/SIGDA Student Research Competition ACM/SIGDA 2020 7th Place at IWLS Contest on Machine Learning+Logic Synthesis IWLS 2020 DAC Young Fellow DAC 2020,2021 Best Paper Finalist (1 out of 6) DAC 2020 Best Paper Award ASP-DAC 2020 4th Place, System Design Contest on Low Power Object Detection DAC-SDC 2019 First奖学金奖学金Fudan University 2017–2018第二奖和第三奖,国家数学竞赛2016 - 2017年模型
指数成分股截至:2024 年 10 月 31 日 公司名称 权重 (%) NVIDIA Corp 8.63 Alphabet Inc 8.32 Amazon.com Inc 8.12 Microsoft Corp 7.93 Meta Platforms Inc 7.74 Taiwan Semiconductor Manufactu 4.28 ServiceNow Inc 4.13 Apple Inc 4.05 Oracle Corp 3.99 Broadcom Inc 3.90 Adobe Inc 3.83 Advanced Micro Devices Inc 3.42 ASML Holding NV 3.30 QUALCOMM Inc 2.80 Palantir Technologies Inc 2.58 Intuit Inc 2.56 Micron Technology Inc 1.70 Arista Networks Inc 1.46 Shopify Inc 1.41 Synopsys Inc 1.21 Cadence Design Systems Inc 1.16 Datadog Inc 1.10 Marvell Technology Inc 1.07 Snowflake Inc 1.04 Crowdstrike Holdings Inc 1.04 SK海力士公司 1.01 联发科技公司 0.84 Vertiv Holdings Co 0.61 Zoom Video Communications Inc 0.56 Monolithic Power Systems Inc 0.55 Atlassian Corp 0.46 ASM International NV 0.39
亲爱的编辑,铁电隧道FET(FETFET)是关于新型低功率电子设备的越来越重要的研究主题[1,2],因为铁电气材料的负电容效应有助于提高潜在的通道并增加TFET中的状态电流。铁电疗法显示辐射性能对辐射的辐射硬性能,这对于基于这种苛刻环境中使用的这种材料的设备很有帮助[3,4]。单事件传播(集合)效应是由空间或陆地辐射环境中的高能量颗粒引起的,这可能会导致软错误的可能性,甚至可能导致航天器中的灾难性事故[5,6]。对重离子打击下FETFET的辐射效应的搜索对于评估这些设备在太空环境中的潜在误差非常重要。为了提高设备的性能,我们提出了一种新的硅在绝缘子双门栅极FETFET(SOI DG-FETFET)中,并使用Si:HFO 2铁电栅极介电。使用Synopsys Sentaurus Tech-Nology Computer Adided Design(TCAD)Simulator [7]研究了SOI DG-FETFET中的单事件传播效应[7]。设备结构和仿真设置。
第一季度营收创纪录达到 226 亿美元,较上一季度增长 23%,较去年同期增长 427%。推出 NVIDIA Blackwell 平台,推动万亿参数级 AI 计算新时代,以及由 Blackwell 驱动的用于生成式 AI 超级计算的 DGX SuperPOD™。宣布分别用于 InfiniBand 和以太网的 NVIDIA Quantum 和 NVIDIA Spectrum™ X800 系列交换机,针对万亿参数 GPU 计算和 AI 基础架构进行了优化。推出搭载 NVIDIA NIM 推理微服务的 NVIDIA AI Enterprise 5.0,以加速企业应用开发。宣布台积电和新思科技将与 NVIDIA cuLitho 合作投入生产,以加速计算光刻,这是半导体制造业计算最密集的工作负载。宣布全球九台新型超级计算机正在使用 Grace Hopper 超级芯片,开启 AI 超级计算新时代。揭晓 Grace Hopper 超级芯片为 Green500 榜单上全球最节能超级计算机的前三名机器提供动力。扩大与 AWS、Google Cloud、Microsoft 和 Oracle 的合作,以推动生成式 AI 创新。与 Johnson & Johnson MedTech 合作,将 AI 功能引入手术支持。
摘要 — 本文介绍了带有高级外设总线 (APB) 接口的串行外设接口 (SPI) IP 核的模型和设计。SPI 是摩托罗拉开发的一种串行通信总线串行协议,已成为事实上的标准。一个系统可以有多个集成电路从机,但在任何给定时间只能有一个主机。因此,在本研究中,SPI 由 Verilog 代码建模,并在设计的早期阶段使用 ModelSim 和 Quartus Prime Lite Edition 16.0 进行仿真和综合。而 Synopsys Tools 即设计编译器被用作设计的主要综合。SPI 接口设计用于从单个从机发送或接收数据,高效的 APB-SPI 控制器具有灵活的数据宽度和频率,最高频率为 16 MHz。SPI 的模式在本研究中也发挥着作用,该协议可以运行四种模式,对应四种可能的时钟配置。结果表明,SPI 核心已成功建模为模式 0、1、2 和 3。此外,这些模式的模拟最大工作频率为 16 MHz,并且在所有四种时钟模式下都具有灵活性。本工作的 ASIC 设计采用 Silterra 0.18μm CMOS 工艺,消耗 27750 μm 2 和 47.12μW。
本报告是“亚美尼亚女科学家协会”非政府组织主要研究人员坚定不移的承诺和不懈努力的证明。作者对 Dauphine 基金会妇女与科学主席团与欧莱雅基金会、法国邮政、法国忠利集团和 Talan 基金会合作提供的宝贵财政支持深表感谢。许多在 IT 领域享有盛誉的本地和国际个人和组织,以及参与教授 IT 课程的知名大学教师,都为这项工作做出了重大贡献。他们的贡献和帮助对本报告的形成起到了重要作用。我们衷心感谢关键信息提供者,他们慷慨地分享经验和知识,极大地支持了本报告,特别是在了解女性在亚美尼亚 IT 市场中的定位方面——这是推进研究的一个关键方面。我们特别感谢 Synopsys 亚美尼亚员工提供的专门支持以及 PicsArt 团队的宝贵意见。此外,我们还要深深感谢 Safe YOU App 的创始人 Mariam Torosyan,她愿意分享关于发起旨在解决性别暴力的技术创新的见解。本报告的研究和综合撰写由 Hasmik Gevorgyan 博士和医学博士 Sona Grigoryan 进行,他们是亚美尼亚非政府组织女科学家协会的杰出性别专家。