摘要:微管和含有特殊微管的结构由微管蛋白组装而成,微管蛋白是真核生物必需蛋白的一个古老超家族。在这里,我们使用生物信息学方法来分析来自顶复门的生物体中微管蛋白的特征。顶复门是原生动物寄生虫,可引起多种人类和动物传染病。单个物种分别含有 1 到 4 个 α - 和 β - 微管蛋白同型基因。这些基因可能指定高度相似的蛋白质,表明功能冗余,或表现出与特殊作用相一致的关键差异。一些(但不是全部)顶复门含有 δ - 和 ε - 微管蛋白基因,这些基因存在于构建含有附属物的基体的生物体中。顶复门 δ - 和 ε - 微管蛋白的关键作用可能仅限于微配子,这与单个发育阶段对鞭毛的有限要求相一致。其他顶复门的序列分化或 δ - 和 ε - 微管蛋白基因的丢失似乎与中心粒、基体和轴丝的需求减少有关。最后,由于纺锤体微管和鞭毛结构已被提议作为抗寄生虫疗法和传播阻断策略的目标,我们将在基于微管蛋白的结构和微管蛋白超家族特性的背景下讨论这些想法。
线粒体在细胞能量生产和代谢中起着核心作用。执行这些功能所需的大多数蛋白质是在细胞质中合成的,并进口到线粒体中。线粒体功能障碍引起的越来越多的代谢性疾病可以追溯到线粒体蛋白导入的错误。通常使用进口到纯化的线粒体中的放射性标记的前体蛋白来研究前体蛋白的进口机制。在这里,我们建立了基于荧光的进口测定法,以分析蛋白质进口到线粒体中。我们表明,荧光标记的前体可以使进口分析具有与使用射线活性前体的敏感性相似的敏感性,但它们提供了用picomole分辨率量化导入的优势。我们将导入测定法调整为96台板格式,以允许以筛选兼容格式进行快速分析。此外,我们表明荧光标记的前体可用于监测纯化的线粒体中F 1 F 0 ATP合酶的组装。因此,我们提供了一种基于敏感的荧光进口测定法,可以实现定量和快速的进口分析。
线粒体在细胞能量生产和代谢中起着核心作用。执行这些功能所需的大多数蛋白质是在细胞质中合成的,并进口到线粒体中。线粒体功能障碍引起的越来越多的代谢性疾病可以追溯到线粒体蛋白导入的错误。通常使用进口到纯化的线粒体中的放射性标记的前体蛋白来研究前体蛋白的进口机制。在这里,我们建立了基于荧光的进口测定法,以分析蛋白质进口到线粒体中。我们表明,荧光标记的前体可以使进口分析具有与使用射线活性前体的敏感性相似的敏感性,但它们提供了用picomole分辨率量化导入的优势。我们将导入测定法调整为96台板格式,以允许以筛选兼容格式进行快速分析。此外,我们表明荧光标记的前体可用于监测纯化的线粒体中F 1 F 0 ATP合酶的组装。因此,我们提供了一种基于敏感的荧光进口测定法,可以实现定量和快速的进口分析。
合成生物学需要高效的系统来支持多个基因的良好协调共表达。在这里,我们发现了一个 9 bp 核苷酸序列,它能够在酵母和丝状真菌中实现高效的多顺反子基因表达。将多顺反子表达与多路复用、无标记、基于 CRISPR/Cas9 的基因组编辑相结合,我们开发了一种称为 HACKing(通过将基因破解到基因组中实现高效和可访问的系统)的策略,用于组装多基因途径。HACKing 允许通过将每种酶的翻译与在所需发酵条件下具有预定丰度的宿主蛋白质的翻译联系起来来预先校准每种酶的表达水平。我们通过快速构建高效的酿酒酵母细胞工厂来验证 HACKing,这些细胞工厂表达 13 种生物合成基因,并产生模型内源性(1,090.41 ± 80.92 mg L − 1 角鲨烯)或异源性(1.04 ± 0.02 mg L − 1 mogrol)萜类化合物产品。因此,HACKing 满足了合成生物学对真菌途径工程的可预测性、简单性、可扩展性和速度的需求,以获得有价值的代谢物。
Prime 编辑能够在生物系统中精确安装基因组替换、插入和删除。然而,在体外和体内高效递送 Prime 编辑组件仍然是一个挑战。我们在此报告了 Prime 编辑改造的病毒样颗粒 (PE-eVLP),它们将 Prime 编辑蛋白、Prime 编辑向导 RNA 和切口单向导 RNA 作为瞬时核糖核蛋白复合物递送。我们系统地设计了 v3 和 v3b PE-eVLP,与基于我们之前报告的碱基编辑器 eVLP 架构的 PE-eVLP 构建体相比,其在人类细胞中的编辑效率提高了 65 到 170 倍。在两种遗传性失明的小鼠模型中,单次注射 v3 PE-eVLP 可在视网膜中产生治疗相关的 Prime 编辑水平、蛋白质表达恢复和部分视觉功能挽救。优化的 PE-eVLP 支持 Prime 编辑核糖核蛋白的瞬时体内递送,通过减少脱靶编辑和消除致癌转基因整合的可能性来提高 Prime 编辑的潜在安全性。
暴露于离子辐射的主要关注点是患疾病的风险。高剂量的辐射会导致造成癌症的明显损害,但低剂量辐射(LDR)的影响不那么清晰,更具争议性。为了进一步研究这一点,它需要专注于受辐射影响的基本生物结构。最近的工作表明,大型语言模型(LLM)可以有效地预测蛋白质结构和其他生物学特性。这项研究的目的是利用诸如Mistral,Llama 2和Llama 3之类的开源LLM,以预先证明辐射诱导的蛋白质的改变以及在Spe-CificeAses的存在下蛋白质蛋白侵蚀(PPIS)的动力学。我们表明,在神经退行性疾病,代谢性疾病和癌症的背景下,微调这些模型可以预测蛋白质相互作用的最先进性能。我们的发现有助于理解辐射暴露与疾病机制之间的复杂关系的持续努力,以说明当前构成模型的细微能力和局限性。代码和数据可用于以下网址:https://github.com/rengel2001/ surp_2024
摘要:由于其低成本,生物兼容性,柔韧性和最小的副作用,因此在最近的生物应用中,可降解的聚合物(均可用于生物元素的生物分子和几种合成聚合物)非常有希望。在这里,我们介绍了有关自然和合成降解聚合物的最新信息,其中简要介绍了不同的多糖,生物蛋白和合成聚合物。聚酯/聚氨基酸/聚酸酯/聚苯基/聚磷酸/聚氨酯与生物医学应用有关。通过物理/化学方法将这些聚合物转化的各种方法。交联,如多蓝色,纳米复合材料/杂化复合材料,互穿络合物,间介粒/波利离子复合物,官能化,聚合物偶联物以及块和移植共聚物。还定义了形成的聚合物纳米颗粒的降解机制,药物加载谱和毒理学方面。这些可降解聚合物的生物材料在伤口敷料/愈合,生物传感器,药物输送系统,组织工程和再生医学等中的生物医学应用被突出显示。此外,简要审查了使用此类纳米系统来解决当前药物输送问题。
摘要:高温应力导致植物功能的复杂变化,这会影响I.A.,细胞壁结构和细胞壁蛋白组成。在这项研究中,响应高(40°C)温度应力的木拟 - 叶丁叶叶叶的细胞壁蛋白质组的定性和定量变化被表征。使用蛋白质组学分析,发现了1533个非冗余蛋白,从中区分了338个细胞壁蛋白。在高温下,我们确定了46种差异丰富的蛋白质,其中4个被过度累积,42个被低估了。在作用在细胞壁多糖上的蛋白质中观察到最显着的变化,特别是2种过度和12种含量低的蛋白质。基于定性分析,确定了一个细胞壁蛋白,该蛋白在40°C下唯一存在,但在对照中不存在,在对照中存在24个蛋白,但在40°C下不存在。总体而言,在40°C下细胞壁蛋白质组的变化表明蛋白酶活性较低,木质化和细胞壁扩张。这些结果提供了对高温响应细胞壁蛋白质组变化的新见解。
RAS 蛋白是小分子鸟嘌呤核苷酸结合蛋白,可在非活性 GDP 结合状态和活性 GTP 结合状态之间循环。RAS 位于质膜内层,在生长因子的细胞外刺激下,通过受体酪氨酸激酶 (RTK)(如表皮生长因子受体 (EGFR))的上游信号传导将其激活(图 1a)。生长因子激活 RTK 会诱导其 C 末端酪氨酸 (Tyr) 残基的自身磷酸化。这些磷酸酪氨酸残基可作为两种含 SH2 的衔接蛋白 SHC 和 GRB2 的结合位点,而 SHC 和 GRB2 又会将鸟嘌呤核苷酸交换因子 SOS 募集到膜上。SOS 与 RAS 共定位会导致 RAS 上的 GDP 与 GTP 交换,并激活下游信号传导(Aronheim 等人,1994 年)。然后,通过 RAS 的信号传导被 GTPase 活化蛋白 (GAP) 的活性终止,GAP 刺激 GTP 水解为 GDP,并释放磷酸盐 (Trahey & McCormick 1987, Xu et al. 1990)。在活性状态下,RAS 通过多种下游通路发出信号,包括 RAF/MEK/ERK 和 PI3K/AKT 等,以调节转录、翻译、增殖和存活(详见 Downward 2003)。
摘要:良好的Oxaliptin是批准全球批准的三种PT(II)抗癌药之一,而Phenthriplatin是一种重要的临床前单功能性PT(II)抗癌药物,它具有与Cisplatin和Carboplatin的不同作用方式,其作用方式不同。然而,导致PT诱导的核仁应力的确切机制仍然很少了解。因此,迫切需要迫切需要更好地理解奥沙利铂和苯哲肽的生物学靶标的研究,以扩大我们对PT诱导的核仁应激的理解,并指导PT化学治疗剂的未来设计。过去取得了巨大成功的一种方法是使用PT单打复合物来研究PT药物的生物学靶标。在此,我们报告了可单击的菲妥蛋白配合物的第一个例外的综合和表征。此外,通过监测核仁蛋白的重新定位和DNA损伤修复生物标志物γH2AX,并通过研究它们的体外细胞毒性,我们表明这些复合物成功地模拟了同一实验中苯烷治疗的细胞反应。此处描述的具有点击命中率的派生thriplatin衍生物扩展了现有的PT单打复合物的库。显着地,它们适合研究核仁应力机制,并进一步阐明PT复合物的生物学靶标。