近年来,电动汽车市场的增长显着增长。该行业的主要目标是降低生产成本。值得注意的是,构成总生产成本的40%的电池组将其中约64%分配给电极的制造。监视关键电池参数,例如厚度,负载,密度,电导率和孔隙率,以最大程度地减少电极生产过程中的废物。直到最近,还没有能够模拟这些参数的技术。但是,Terahertz技术已成为一种评估电池电极的强大,无损和安全的方法。电池电极涂在由铝和铜等材料制成的底物上。由于METELS完全反映了Terahertz波,因此可以在反射模式下测量电极。这种方法允许确定涂层的厚度及其复杂的折射率,可以解释以推断关键电极参数。在我们的研究中,我们利用了Teraview的最新进步Teracota,Teracota是一种设计用于工业应用的Terahertz系统,配备了自我引用的Terahertz传感器。传感器安装在龙门上,提供了电极加载的Terahertz图像,并可以与光学图像进行直接比较,从而揭示了阴极上的缺陷。当比较通过Terahertz传感器获得的密度测量与实验室中测量的密度测量值时,我们达到了0.01 g/cm3的精度。关键字:ndt; Terahertz;光谱;电池电极;电动车辆此外,通过Terahertz系统的厚度测量与使用毫米在小于1 µm以内获得的厚度测量。同样,当比较通过Terahertz与通过四点探针测量的DC电导率进行比较时,趋势是一致的。正在进行的孔隙率进行的研究表明,折射率与特定电极集的功率相关,表明可能具有更广泛的应用。这种全面的方法证明了将Terahertz技术集成到电池电极制造过程中的重要优势,从而通过提高效率和降低浪费来彻底改变行业。
Terahertz(THZ)频带在无线通信中表现出了非凡的承诺。其出色的数据传输速度和非侵入性质,除其他优势外,还具有在6G和7G技术(包括移动设备,环境监测和医疗保健)中解锁巨大可能性的潜力。医学领域中的一个特定应用是心脏的生物监测设备。我们在我们的项目中探讨了这一应用,该应用程序旨在确保与人类心脏组织相互作用时THZ辐射的安全性。为此,我们通过开发人心脏的2D和3D模型来模拟心脏组织中Thz波的波传播和热效应,从而扩展了Comsol多物理学中的现有计算模型©。这些模型有助于定义下一代生物医学设备中THZ辐射的安全限制,从而加速了无线网络的发展。
单层石墨烯(SLG)的唯一光电特性非常适合从X射线到微波的广泛频率开发光子设备。在Terahertz(THZ)频率范围(0.1-10 THz)中,这导致了具有最先进性能的光学调节器,非线性源和光电探测器的发展。关键挑战是以可扩展的方式将基于SLG的活动元素与先前存在的技术平台集成在一起,同时保持绩效水平不受干扰。在这里,我们报告了由大区域SLG制成的室温THZ探测器,由化学蒸气沉积(CVD)生长,并集成在天线偶联的场效应晶体管中。我们有选择地激活光电电检测动力学,并在Al 2 O 3上采用不同的SLG的不同介电配置,而有无大区域CVD六角形氮化硼氮化物限值来研究其对SLG热电学适当的影响基础光照相的影响。使用这些可扩展体系结构,响应时间5 ns和噪声等效功率(NEP)1 NW Hz 1/ div>
超导体中的量子涡流从几十年来的实际观点和基本观点中都引起了人们的持续关注。强化研究已致力于表征超导体的大电流和高磁场应用的默认电流密度[1,2]和静置频率[3]的行为。涡流也引起了人们的注意,因为它被预测可容纳拓扑超振动器表面的主要构粒粒子[4,5],并且最近在基于铁的超导体中提出了它的存在[6-13]。还认为涡流参与了最近公认的非跨脑电图超导体的微观机制,该反应表现出非近代电动传输现象[14-19]和非近代关键电流或磁场[20,21]。已经开发了有关机制的广泛理论研究[22-29]。最近,发现源自涡旋运动的非偏射反应出现在准式,特别是terahertz,频率以肮脏的极限超级导体NBN NBN在超高电的注入下。在这里,超电流充当了反转和时间反向的象征破裂领域,从而产生了巨大的第二季型生成(SHG)[30]。在如此高的频率下,涡流的动力学被证明是由单个涡流核心的运动所主导的,无论涡旋 - 涡流相互作用如何。
Terahertz(THz)频率范围从0.1到10 THz,位于微波和红外频率之间,提供了安全性,宽带能力和低能消耗等独特性能[1,2]。尽管成分进步的挑战引起的最初忽视,但THZ频率现在因其在通信系统,光谱,生物医学成像和军事应用等领域的广泛效用而越来越受到认可[3,4]。THZ波的能力渗透到各种材料以及其高时间分辨率的能力中,它们对于在高速无线通信系统中的应用中非常有价值。新方法有效地利用了THZ频率,从而巩固了现有的限制并为成像,通信和其他地区的开创性应用开辟了可能性。Terahertz(THZ)技术的重要性源于其无与伦比的属性,在多种应用中起着关键作用。在电磁波的范围内,THZ系统呈现出宽敞的带宽,可促进高更频谱分析和成像[5]。thz成像系统在医学领域有效,特别是用于研究脑组织和识别神经退行性疾病和脑肿瘤等疾病的神经诊断技术[6,7]。此外,THZ技术在药物环境中至关重要,从而使分子光谱能够用于分子的诊断和成像[8]。除了医疗保健领域外,THZ技术被证明在半导体生产和汽车组装等工业环境中有用,证明了其在各个行业的多功能性和影响力。
图2。(a)使用THZ-SNOM设备测量的散射THZ信号的空间映射;图像16×16μm2。丝带的宽度为𝑤= 3.4 µm,它们被空间隙隔开0.5μm;阵列的周期为𝐿= 3.9 µm;石墨烯填充分数为87%。(b)石墨烯丝带研究阵列的AFM高度轮廓(5×5 µm的高分辨率图像!);明确观察到由于SIC露台步骤而引起的高度变化。(c)同一区域的高分辨率Thz-snom图像。在此视图中,我们还区分石墨烯丝带中的SIC Terrace步骤。(d)对AFM记录的样品高度与在扫描过程中沿面板中指示的绿色水平线扫描期间获得的样品高度之间的比较(b,c)。对于散射的THz信号,减去背景(直线);减去背景的水平为〜9,(d)中绘制的Thz信号幅度表示使用相同的比例相对于此值的变化。
最近开发了Terahertz(THZ)二维相干光谱(2DC)是一种强大的技术,可以以与其他光谱镜的方式获取材料信息。在这里,我们利用THZ 2DC研究了常规超导体NBN的THZ非线性响应。使用宽带THZ脉冲作为光源,我们观察到了一个三阶非线性信号,其光谱成分的峰值达到了超导间隙能量2δ的两倍。具有窄带Thz脉冲,在驱动频率ω处鉴定出THZ非线性信号,并在ω¼2δ时在温度下表现出谐振剂的增强。一般的理论考虑表明,这种共振只能由光激活的顺磁耦合引起。这证明了非线性THZ响应可以访问与磁磁性拉曼样密度波动不同的过程,据信这在金属的光学频率下占主导地位。我们的数值模拟表明,即使对于少量疾病,ω¼2δ共振也是由整个研究疾病范围内的超导振幅模式主导的。这与其他共振相反,其振幅模式的贡献取决于疾病。我们的发现证明了THZ 2DC探索其他光谱学中无法访问的集体激发的独特能力。
摘要:在这项工作中,我们引入了一种新颖的连贯的完美吸收器,通过强调通过使用不对称石墨烯元素的宽带宽度,厚度减小,可调性和直接设计来突出其新颖性。此设计均包含在硅基板两侧排列的正方形和圆形石墨烯贴片。具有优化的结构设计,该吸收器始终在1.65至4.49 THz的频率范围内捕获超过90%的传入波,而石墨烯费米水平为0.8 eV,整个设备的测量仅为1.5 um。这使我们的吸收器比以前的设计更有效和紧凑。通过将元表面的几何设计与石墨烯费米水平相结合,可以显着增强吸收器的有效性。可以预料,这种超薄的宽带连贯的完美吸收装置将在出现的芯片上通信技术中起着至关重要的作用,包括光调节器,光电探测器等。
1个网络科学技术学校,北京大学,北京100191,中国。2北京大学北京大学电子和信息工程学院,中国。3中国科学院物理研究所北京国家凝结物理实验室,中国北京100190。4材料科学与光电工程中心,中国科学院,北京100049,中国。5 Zhangjiang实验室,20120年上海,中国。6 Songshan Lake Materials Laboratory,Dongguan 523808,中国广东。 7物理和应用物理学,新加坡Nanyang Technological University的物理和数学科学学院,新加坡637371。 8上海大学上海大学物理科学技术学院,2011年,中国。6 Songshan Lake Materials Laboratory,Dongguan 523808,中国广东。7物理和应用物理学,新加坡Nanyang Technological University的物理和数学科学学院,新加坡637371。8上海大学上海大学物理科学技术学院,2011年,中国。8上海大学上海大学物理科学技术学院,2011年,中国。
摘要:孕酮(Prog)和雌激素(E 1)是奶牛中的典型生殖激素。评估体内这些激素的水平可以有助于发情识别。在当前的工作中,使用Terahertz时域光谱法(THZ-TDS)和超材料技术对Prog和E 1进行定性和定量检测的可行性进行了初步研究。首先,收集并分析了PROG和E 1样品的时域光谱,频域光谱和吸收系数。使用密度功能理论(DFT)进行了振动分析。随后,使用CST Studio Suite(CST)软件中的频域解决方案算法设计和模拟了双环(DR)超材料结构。这旨在确保DR的双共振峰与Prog和E 1的吸收峰相似。最后,对DR对不同浓度的PROG/E 1的响应进行了分析并进行定量建模。结果表明,可以通过比较Prog的相应DR共振峰变化和E 1样本以各种浓度进行定性分析。PROG定量模型的最佳R 2为0.9872,而E 1为0.9828。这表明Terahertz光谱 - 超材料技术用于定性和定量检测典型的生殖激素Prog和奶牛中的E 1是可行的,值得探索。这项研究提供了鉴定奶牛发情的参考。