目的:非小细胞肺癌(NSCLC)治疗面临包括耐药性在内的障碍。设计了一种转铁蛋白功能化的蛋白质-脂质混合纳米颗粒(PLHN),其中同时装载顺铂(CIS)和多西他赛(DTX),用于肺癌治疗。方法:将CIS和DTX装入混合纳米颗粒中,然后用转铁蛋白(Tf)修饰。通过确定释放行为、体外细胞毒性和体内抗癌效率来研究Tf功能化的蛋白质-脂质混合纳米颗粒(Tf-CIS/DTX-PLHN)。结果:Tf-CIS/DTX-PLHN的纳米尺寸为189.5±5.9纳米,表面测试为-16.9±2.1 mV。 Tf-CIS/DTX-PLHN体外和体内抗肿瘤能力明显优于不含Tf的CIS和DTX共载脂质纳米粒(CIS/DTX-LN)、单一载药纳米粒和游离药物。结论:由于Tf的增效作用和药物的协同作用,Tf-CIS/DTX-PLHN可以抑制肺癌肿瘤生长,有助于肺癌的治疗。关键词:肺癌,混合纳米粒,纳米结构脂质纳米粒,蛋白质纳米粒,转铁蛋白
在铁路运营中,铁路公司 (RVU) 的运营流程呈现数字化趋势。该研究项目的目的是(1)展示以列车司机(Tf)为主要用户的数字铁路技术的研发现状以及邻近(交通)部门的可比项目。进一步的目标是 (2) 描述 Tf 当前日常工作生活中的数字工作设备。该研究构成了休闲科学评估的起点。其中包括:机车司机室的人体工学设计、数字化工作设备对驾驶性能的影响以及移动工作设备的可用性方面。考虑的重点是驾驶室中平板电脑应用的集成。此外,该研究项目旨在研究(3)使用数字工作工具对Tf的培训和继续教育以及适用的法律框架的影响,并解释有关数据保护和数据安全的适用原则。
图1 |对发展中的人类新皮层的多摩变调查。a,本研究中使用的样品的描述。b,snmultiome数据的UMAP图,显示了33种细胞类型的分布。c,UMAP图显示了年龄组的分布(左)和区域(右)。d,跨发育阶段和皮质区域的单个细胞类型的比例。条是由细胞类型颜色编码的,其传说可以在面板a中找到。 E,左,单个细胞类型中的签名转录因子(TF)的点。中间,汇总的染色质可及性概况在跨类型的签名TFS启动子上。蓝色箭头代表每个TF的转录起始位点和基因体。正确,跨细胞类型的标志性TF的归一化Chromvar基序活性的热图。
心血管疾病 (CVD) 是全球最大的死亡原因,受遗传因素影响很大。全基因组关联研究已经在非编码基因组中定位了 90% 以上的 CVD 相关变异,这些变异可以改变转录因子 (TF) 等调节蛋白的功能。然而,由于全基因组关联研究中的单核苷酸多态性 (SNP) 数量极其庞大 (> 500,000),因此对体外分析的变异进行优先排序仍然具有挑战性。在这项工作中,我们实现了一种计算方法,该方法考虑基于支持向量机 (SVM) 的 TF 结合位点分类和心脏表达数量性状位点 (eQTL) 分析,以识别和优先排序潜在的 CVD 致病 SNP。我们在 TF 足迹和假定的心脏增强子中发现了 1535 个与 CVD 相关的 SNP,以及 14,218 个与心脏组织中的基因型依赖性基因表达处于连锁不平衡的变异。利用来自人类诱导多能干细胞衍生的心肌细胞中的两种心脏 TF(NKX2-5 和 TBX5)的 ChIP-seq 数据,我们训练了一个大规模间隙 k-mer SVM 模型,以识别改变 NKX2-5 和 TBX5 结合的与 CVD 相关的 SNP。通过对假定增强子中的人类心脏 TF 基因组足迹进行评分并通过电泳迁移率分析测量体外结合来测试该模型。根据预测的结合变化幅度,对预测会改变 NKX2-5(rs59310144、rs6715570 和 rs61872084)和 TBX5(rs7612445 和 rs7790964)结合的五种变体进行了优先体外验证,这些变体位于心脏组织 eQTL 中。所有五种变体均改变了 NKX2-5 和 TBX5 DNA 结合。我们提出了一种生物信息学方法,该方法考虑了组织特异性 eQTL 分析和基于 SVM 的 TF 结合位点分类,以优先考虑 CVD 相关变体进行体外分析。
转座元素(TES)占我们基因组的约50%,但是对TES如何影响基因组进化的知识仍然不完整。利用Encode4数据,我们提供了迄今为止对监管基因组贡献的最全面研究。我们发现236,181(〜25%)人类候选元素(CCRES)是te衍生的,自人小鼠裂口以来,人群分裂以来,有超过90%的血统特异性,占血统特异性ccr的8-36%。除了罪恶之外,TES中与CCRE相关的转录因子(TF)基序比偶然的预期源自祖先TE序列。我们表明,TE可以在其集成站点附近采用类似的监管活动。自人机差异以来,TE在30个检查的TF中贡献了3 - 56%的TF结合位点周转事件。最后,就MPRA活性和GWAS变体富集而言,TE衍生的CCR与非TE CCR相似。总的来说,我们的结果证实了TE在塑造人类调节基因组中发挥重要作用的观念。
背景:门静脉肿瘤血栓形成(PVTT)是晚期肝细胞癌(HCC)的频繁而严重的并发症,通常会导致预后不良。尽管PVTT具有显着的临床相关性,但驱动其形成的分子机制尚不清楚。长的非编码RNA(LNCRNA)已成为PVTT进展的潜在贡献者,促使这项研究探索LNCRNA作为PVTT的潜在生物标志物。方法:我们分析了来自基因表达综合的公开可用数据集,以识别三个比较的差异表达的LNCRNA和mRNA:正常与HCC,正常与PVTT和HCC与PVTT。转录曲线,并使用在线数据库筛选了与HCC和PVTT特异性LNCRNA相互作用的蛋白质,表明所有相互作用的蛋白质都是转录因子(TFS)。我们通过从每次比较中与TF靶基因与差异表达的基因(DEG)相交的LNCRNA – TF – TF -TARGAT基因调节网络。蛋白质 - 蛋白质相互作用(PPI)网络分析以识别关键簇和集线器基因,并突出显示了AR和ESR1之类的TF。进行了基因本体分析,以了解调节网络的生物学功能。结果:该研究确定了正常,HCC和PVTT样品的不同转录曲线。构建了涉及LNCRNA,TFS和靶基因的关键调节网络,并将包括AR和ESR1在内的重要集线器基因确定为潜在的治疗靶标。PPI网络分析揭示了与PVTT进展相关的重要集群,而基因本体分析则提供了对相关生物学功能的见解。结论:本研究提出了一个新的理解LNCRNA – TF介导的基因调节的框架。它确定了潜在的治疗靶标和预后生物标志物,这些靶标可以促进PVTT的靶向疗法的开发,从而提供新的机会来改善临床结果。
(2532) MFB4 DM 0 2018352 TB 22 PA 8D PA TU PA TU TB PA TU TB MFB5 DM 0 2018352 TB 0 6 PA 67 PA TU PA TU TB PA TU TB MFD4 DM 0 2018352 TP 22 PA 8D PA TU PA TU TP PA TU TP MFD5 DM 0 2018352 TP 0 6 PA 67 PA TU PA TU TP PA TU TP MFI4 DM 0 2018352 SI 22 PA 8D PA TU PA TU SI PA TU SI MFI5 DM 0 2018352 SI 0 6 PA 67 PA TU PA TU SI PA TU SI MFH4 DM 0 2018352 TF 22 PA 8D PA TU PA TU TF PA TU TF MFH5 DM 0 2018352 TF 0 6 PA 67 PA TU PA TU TF PA TU TF MFK4 DM 0 2018352 TD 22 PA 8D PA TU PA TU TD PA TU TD MFK5 DM 0 2018352 TD 0 6 PA 67 PA TU PA TU TD PA TU TD MFM4 DM 0 2018352 TM 22 PA 8D PA TU PA TU TM PA TU TM MFM5 DM 0 2018352 TM 0 6 PA 67 PA TU PA TU TM PA TU TM MFN4 DM 0 2018352 TN 22 PA 8D PA TU PA TU TN PA TU TN MFN5 DM 0 2018352 TN 0 6 PA 67 PA TU PA TU TN PA TU TN MFQ4 DM 0 2018352 TQ 22 PA 8D PA TU PA TU TQ PA TU TQ MFQ5 DM 0 2018352 TQ 0 6 PA 67 PA TU PA TU TQ PA TU TQ MFS4 DM 0 2018352 TV 22 PA 8D PA TU PA TU TV PA TU TV MFS5 DM 0 2018352 TV 0 6 PA 67 PA TU PA TU TV PA TU TV MFZ4 DM 0 2018352 TC 22 PA 8D PA TU PA TU TC PA TU TC MFZ5 DM 0 2018352 TC 0 6 PA 67 PA TU PA TU TC PA TU TC
图 1:根据方程 (24),在 N q 量子比特量子寄存器上,e U ( tf ; t 0 ) 的完整时间演化的量子电路设计示意图。电路从左到右运行。门 e U ( tk ),其中 tk = t 1 , t 2 , · · · , tn 且 tn = tf ,对应于散射时间 tk 处单个时间步长的时间演化算子。尽管 e U ( tk ) 随 tk 而变化,但它在每个短时间步长 [ tk − 1 , tk ] 内都被认为是时不变的。| q ⟩ ⊗ N q 表示 N q 量子比特寄存器。