NPWS许可证C17/2023(处理蝙蝠的许可证,2026年1月23日到期); NPWS许可证27/2023(照片/电影蝙蝠的许可证,2024年12月31日到期); NPWS许可证DER/BAT 2022-36(调查许可证,2025年3月24日到期)。权威性声明:奥格尼博士自2000年以来一直担任蝙蝠专家,并为所有爱尔兰蝙蝠物种开展了广泛的调查工作,包括大规模开发项目,道路计划,住宅开发项目,风电场开发项目以及与建筑物翻新或栖息地增强有关的较小项目。她是爱尔兰蝙蝠保护的监视协调员和教练20年。她是21世纪2014年出版物爱尔兰蝙蝠的合着者。本书获得了2015年CIEEM信息共享奖。Aughney博士是2010 - 2015年爱尔兰哺乳动物地图集的特约作者。所有分析和报告均由Tina Aughney博士完成。在训练有素的现场助理的协助下,收集的数据和测量完成。Shaun Boyle先生(现场助理)NPWS许可证DER/BAT 2022-37(调查许可证,2025年3月24日到期)。客户端:ESB网络项目名称和位置:变电站,变压器建筑,Ardnacrusha,Co。Clare报告修订历史
直接语音到语音翻译 (S2ST) 使用单一模型将语音从一种语言翻译成另一种语言。然而,由于语言和声学多样性的存在,目标语音遵循复杂的多模态分布,这对 S2ST 模型实现高质量翻译和快速解码提出了挑战。在本文中,我们提出了 DASpeech,这是一种非自回归直接 S2ST 模型,可实现快速和高质量的 S2ST。为了更好地捕捉目标语音的复杂分布,DASpeech 采用两遍架构将生成过程分解为两个步骤,其中语言解码器首先生成目标文本,然后声学解码器根据语言解码器的隐藏状态生成目标语音。具体而言,我们使用 DA-Transformer 的解码器作为语言解码器,并使用 FastSpeech 2 作为声学解码器。DA-Transformer 使用有向无环图 (DAG) 对翻译进行建模。为了在训练过程中考虑 DAG 中的所有潜在路径,我们通过动态规划计算每个目标 token 的预期隐藏状态,并将它们输入声学解码器以预测目标梅尔频谱图。在推理过程中,我们选择最可能的路径并将该路径上的隐藏状态作为声学解码器的输入。在 CVSS Fr → En 基准上的实验表明,DASpeech 可以实现与最先进的 S2ST 模型 Translatotron 2 相当甚至更好的性能,同时与自回归基线相比保持高达 18.53 倍的加速。与之前的非自回归 S2ST 模型相比,DASpeech 不依赖于知识蒸馏和迭代解码,在翻译质量和解码速度方面都实现了显着提升。此外,DASpeech 还展示了在翻译过程中保留源语音的说话者声音的能力。23
脑机接口 (BMI) 旨在建立生物神经系统与外部机器之间的直接通信通路 [1, 2]。不同类型的神经信号已在各种 BMI 应用中得到展示。脑电图 (EEG) 是 BMI 场景中最常见的电生理信号之一,例如注意力评估 [3]、运动想象 [4]、睡眠分期 [5] 和癫痫发作检测 [6]。然而,EEG 记录过程很容易因无线传输中的数据包丢失、受试者的意外移动或电极接触不良而受到干扰,从而导致信号不完整。一些文献中提出了张量完成方法 (TCM),通过将记录的 EEG 视为多通道张量来执行 EEG 完成 [7–10]。[9] 证明同时张量分解和完成 (STDC) 可以在几种 TCM 中实现更好、更稳健的性能。TCM 家族可以发现多通道信号的低秩表示,可进一步用于信号恢复。然而,TCM 家族依赖于多个脑电图通道,这对于单通道脑电图记录不起作用。序列到序列神经网络是脑电图补全的另一种解决方案。[11] 使用门层自动编码器 (GLAE) 将深度学习引入该领域。GLAE 在普通自动编码器之前添加了一个切换层。切换层在训练期间屏蔽了几个输入点。该模型学会了根据未屏蔽的点来补全屏蔽的点。GLAE 在两个稳态视觉诱发电位 (SSVEP) 脑电图上实现了 0.02 到 0.05 的 RMSE 水平
“创新就是变革”:国家宪兵变革服务局局长兼本期科学总监 Christophe Jacquot 在本期作品的筹备会议上向我们推出了这一公式。我们进一步推论,创新就是敢于创新!在发明、想象未来时,通常会用一个反射性短语来完成这一陈述:“警察是一个传统主义者,他不喜欢被人欺负。”平凡?现实 ? 该机构理所当然地非常重视它的价值观、它的记忆、它的原则。然而,我们绝非谨慎和无所作为:事实上,宪兵队早已接受了创新文化。因为这并不否定价值观,相反,它强化了价值观!
在这项工作中,我们提出了一种新颖的歧视性框架,用于灵巧的掌握生成,称为d外部g rasp tr ansformer(dgtr),能够通过仅使用一个向前的通行方式处理对象点云来预测一组可行的抓握姿势。我们将敏捷的掌握生成作为设定的预测任务,并为其设计一个基于变压器的握把模型。但是,我们确定此设置的预测范式在灵活的掌握领域遇到了几种优化的挑战,并导致限制性能。为了解决这些问题,我们提出了培训和测试阶段的渐进策略。首先,提出了动态静态匹配训练(DSMT)策略,以增强训练阶段的光学稳定性。第二,我们使用一对对抗性损失来实现对抗平衡的测试时间适应(ABTTA),以提高测试阶段的掌握质量。dexgraspnet数据集的实验结果证明了DGTR可以预测具有高质量和多样性的灵活掌握姿势的能力。值得注意的是,在保持质量高的同时,DGTR Sigsigs所预测的Grasp的多样性明显优于先前的多个指标,而没有任何数据预处理。代码可在https://github.com/isee-laboratory/dgtr上找到。
离线增强学习(RL)的最新进步强调了条件序列建模(CSM)的功能,该范例是一种基于历史轨迹和目标返回的范式,该范式学习了动作分布。然而,由于单个轨迹内的采样回报之间的不一致和在多个轨迹之间的最佳回报之间的不一致,这些方法通常与将最佳轨迹缝合在一起的最佳轨迹拼接在一起。幸运的是,动态编程方法(DP)方法通过利用价值函数来近似每个状态的最佳未来回报,提供解决方案,而这些技术容易出现不稳定的学习行为,尤其是在长期和稀疏回报的情况下。在这些见解的基础上,我们提出了Q值重新授权的变压器(QT),该变压器(QT)结合了变压器的轨迹建模能力与DP方法的最佳未来回报的可预测性。QT学习一个动作值函数,并将最大化行动值的术语整合到CSM的培训损失中,该损失旨在寻求与行为政策紧密相符的最佳动作。对D4RL基准数据集的经验评估证明了QT优于传统的DP和CSM方法,这突出了QT在离线RL中增强最新艺术的潜力。
视觉变形金刚在各种计算机视觉任务中取得了令人鼓舞的进步。一个普遍的信念是,这归因于自我注意力在对特征令牌之间的全球依赖性建模中的能力。然而,自我注意力仍然面临着密集的预测任务的几个挑战,包括高计算复杂性和缺乏理想的电感偏见。为了减轻这些问题,重新审视了视觉变压器与Gabor过滤器的潜在优势,并提出了使用卷积的可学习的Gabor过滤器(LGF)。LGF不依赖自我注意力,它用于模拟生物学视觉系统中基本细胞对输入图像的响应。这鼓励视觉变形金刚专注于跨不同尺度和方向的目标的歧视性特征表示。此外,基于LGF设计了仿生焦点视觉(BFV)块。此块从神经科学中汲取灵感,并引入了双路径前进网络(DPFFN),以模仿生物学视觉皮层的平行和级联信息处理方案。此外,通过堆叠BFV块开发了一个称为焦视变压器(FVITS)的金字塔骨干网络的统一家族。实验结果表明,FVIT在各种视觉任务中表现出卓越的性能。在计算效率和可扩展性方面,与其他同行相比,FVIT具有显着优势。
目的是研究是否可以使用能量收集方法为 MCU 供电。MCU 及其传感器需要的最大功率输出高达 200 mW(5 V)。由于变压器周围有许多高电流传输线,因此主要关注点是电磁感应。探索的其他类型的能量收集 (EH) 包括热能和振动。最初的目标是研究是否有可能将 EH 安装在变压器侧面。这可以使用磁感应、热能或振动来收集能量。如果这不可能,则更具侵入性的设计是将 EH 放在变压器箱顶部,靠近 400V 高电流线的输出。在这里,可以探索使用围绕传输线的电流变压器等选项。
摘要 — 有效学习脑电图 (EEG) 信号中的时间动态具有挑战性,但对于使用脑机接口 (BCI) 解码大脑活动至关重要。尽管 Transformers 因其长期顺序学习能力在 BCI 领域广受欢迎,但大多数将 Transformers 与卷积神经网络 (CNN) 相结合的方法都无法捕捉 EEG 信号从粗到细的时间动态。为了克服这一限制,我们引入了 EEG-Deformer,它将两个主要的新组件合并到 CNN-Transformer 中:(1) 分层粗到细 Transformer (HCT) 块,将细粒度时间学习 (FTL) 分支集成到 Transformers 中,有效辨别从粗到细的时间模式;(2) 密集信息净化 (DIP) 模块,利用多级、净化的时间信息来提高解码准确性。对三项代表性认知任务(认知注意力、驾驶疲劳和心理负荷检测)进行的全面实验一致证实了我们提出的 EEG-Deformer 的通用性,表明它的表现优于或与现有的最先进方法相当。可视化结果表明,EEG-Deformer 从神经生理学上有意义的大脑区域学习相应的认知任务。源代码可在 https://github.com/yi-ding-cs/EEG-Deformer 找到。
。CC-BY-NC 4.0国际许可证的永久性。根据作者/筹款人提供了预印本(未经同行评审认证)提供的,他已授予Biorxiv的许可证,以在2025年1月14日发布的此版本中显示此版本的版权持有人。 https://doi.org/10.1101/2025.01.13.632745 doi:Biorxiv Preprint
