非线性光学频率转换与非线性介质相互作用以生成新频率,是现代光子系统中的关键现象。然而,这些技术的主要挑战在于难以调整在给定材料中驱动这种影响的非线性电敏感性。作为一种对光学非线性的动态控制,这很大程度上仍然局限于研究实验室,从而将其实际用作用作光谱工具。在这项工作中,我们旨在通过探索两种潜在的机制来推动具有可调非线性响应的设备的开发,以在二维材料中对二阶光学非线性进行电力。具体来说,我们考虑了两种配置:在第一个材料中,材料本质上并未表现出第二谐波生成(SHG),但这种反应是由外部场引起的;第二,外场会诱导已经表现出SHG的材料中的掺杂,从而改变了非线性信号的强度。在这项工作中,我们使用实时的AB-Initio方法研究了这两种配置,但在平面外的外部场上,包括屏蔽的电子电子相互作用中掺杂引起的变化的影响。然后,我们讨论当前计算方法的局限性,并将我们的结果与实验测量进行比较。
由GAAS底物上的分子束外延生长的外延结构由6个周期Al 0组成。8 GA 0。 2 as/al 0。 25 GA 0。 75作为Bragg反射器(下视镜),A 350 nm Al 0。 45 GA 0。 55作为核心和4个周期Al 0。 8 GA 0。 2 as/al 0。 25 GA 0。 75作为Bragg反射器(上镜)。 两个Bragg镜子在NIR范围内为泵梁提供了光子带隙垂直限制,也为电信范围内生成的SPDC光子的总内部反射覆盖提供了。 因此,泵和SPDC模式的特征是不同的分散曲线,允许单波导相匹配条件Δβ(0)= 0(等式 (s6)下面)要在关注的光谱范围内满足。 外延结构是通过分子束外延生长的,样品通过电子光刻(使用高分辨率HSQ抗性)处理,然后是ICP干蚀刻。 SPDC电信模式的模拟耦合常数为C TE = 2。 7 mm -1在TE极化中,C TM = 2。 48 GA 0。2 as/al 0。25 GA 0。 75作为Bragg反射器(下视镜),A 350 nm Al 0。 45 GA 0。 55作为核心和4个周期Al 0。 8 GA 0。 2 as/al 0。 25 GA 0。 75作为Bragg反射器(上镜)。 两个Bragg镜子在NIR范围内为泵梁提供了光子带隙垂直限制,也为电信范围内生成的SPDC光子的总内部反射覆盖提供了。 因此,泵和SPDC模式的特征是不同的分散曲线,允许单波导相匹配条件Δβ(0)= 0(等式 (s6)下面)要在关注的光谱范围内满足。 外延结构是通过分子束外延生长的,样品通过电子光刻(使用高分辨率HSQ抗性)处理,然后是ICP干蚀刻。 SPDC电信模式的模拟耦合常数为C TE = 2。 7 mm -1在TE极化中,C TM = 2。 425 GA 0。75作为Bragg反射器(下视镜),A 350 nm Al 0。45 GA 0。 55作为核心和4个周期Al 0。 8 GA 0。 2 as/al 0。 25 GA 0。 75作为Bragg反射器(上镜)。 两个Bragg镜子在NIR范围内为泵梁提供了光子带隙垂直限制,也为电信范围内生成的SPDC光子的总内部反射覆盖提供了。 因此,泵和SPDC模式的特征是不同的分散曲线,允许单波导相匹配条件Δβ(0)= 0(等式 (s6)下面)要在关注的光谱范围内满足。 外延结构是通过分子束外延生长的,样品通过电子光刻(使用高分辨率HSQ抗性)处理,然后是ICP干蚀刻。 SPDC电信模式的模拟耦合常数为C TE = 2。 7 mm -1在TE极化中,C TM = 2。 445 GA 0。55作为核心和4个周期Al 0。8 GA 0。 2 as/al 0。 25 GA 0。 75作为Bragg反射器(上镜)。 两个Bragg镜子在NIR范围内为泵梁提供了光子带隙垂直限制,也为电信范围内生成的SPDC光子的总内部反射覆盖提供了。 因此,泵和SPDC模式的特征是不同的分散曲线,允许单波导相匹配条件Δβ(0)= 0(等式 (s6)下面)要在关注的光谱范围内满足。 外延结构是通过分子束外延生长的,样品通过电子光刻(使用高分辨率HSQ抗性)处理,然后是ICP干蚀刻。 SPDC电信模式的模拟耦合常数为C TE = 2。 7 mm -1在TE极化中,C TM = 2。 48 GA 0。2 as/al 0。25 GA 0。 75作为Bragg反射器(上镜)。 两个Bragg镜子在NIR范围内为泵梁提供了光子带隙垂直限制,也为电信范围内生成的SPDC光子的总内部反射覆盖提供了。 因此,泵和SPDC模式的特征是不同的分散曲线,允许单波导相匹配条件Δβ(0)= 0(等式 (s6)下面)要在关注的光谱范围内满足。 外延结构是通过分子束外延生长的,样品通过电子光刻(使用高分辨率HSQ抗性)处理,然后是ICP干蚀刻。 SPDC电信模式的模拟耦合常数为C TE = 2。 7 mm -1在TE极化中,C TM = 2。 425 GA 0。75作为Bragg反射器(上镜)。 两个Bragg镜子在NIR范围内为泵梁提供了光子带隙垂直限制,也为电信范围内生成的SPDC光子的总内部反射覆盖提供了。 因此,泵和SPDC模式的特征是不同的分散曲线,允许单波导相匹配条件Δβ(0)= 0(等式 (s6)下面)要在关注的光谱范围内满足。 外延结构是通过分子束外延生长的,样品通过电子光刻(使用高分辨率HSQ抗性)处理,然后是ICP干蚀刻。 SPDC电信模式的模拟耦合常数为C TE = 2。 7 mm -1在TE极化中,C TM = 2。 475作为Bragg反射器(上镜)。两个Bragg镜子在NIR范围内为泵梁提供了光子带隙垂直限制,也为电信范围内生成的SPDC光子的总内部反射覆盖提供了。因此,泵和SPDC模式的特征是不同的分散曲线,允许单波导相匹配条件Δβ(0)= 0(等式(s6)下面)要在关注的光谱范围内满足。外延结构是通过分子束外延生长的,样品通过电子光刻(使用高分辨率HSQ抗性)处理,然后是ICP干蚀刻。SPDC电信模式的模拟耦合常数为C TE = 2。7 mm -1在TE极化中,C TM = 2。4
联系方式:Lobna Hajji elhajjilobna@yahoo.fr 2024 年 12 月 3 日 突尼斯 Sidi Bouzid 区域农业研究中心
摘要 - 浮点精度调整(FPPT)搜索TAR-获取可降低精确度的计算程序的程序,从而交易绩效准确性。fppt通过搜索程序变体的混合精确设计空间来最大程度地受到某些正确性crite-crite-ria的约束。鉴于它们的计算强度和复杂性,天气和气候模型呈现出主要的FPPT目标。然而,过去在该领域的FPPT尝试受到域专家(乏味)和低精度仿真(掩盖速度)的手动努力的限制。自动化和性能引导的技术自然是感兴趣的,但尚未在此规模上探索。由定制的福特转换工具促进,本文介绍了第一个案例研究:基于在三个现实世界中的天气和气候模型中将FPPT应用于计算热点的各种结果(MPAS-A,ADCIRC和MOM6)(MOM6),我们确定和讨论了众多的范围,以获取最佳的范围,以获取最佳的范围。 这。
大型多模型模型(LMM)在单图像视觉语言任务中显示出了很好的结果。但是,他们解决多图像视觉语言任务的能力尚待改进。OpenFlamingo,EMU2和IDEFICS等现有的LMM通过对数亿个既没有有效又不有效的嘈杂的交织图像文本数据进行预训练,从而获得了多图像的能力。在本文中,我们旨在通过使用学术级别的资源进行指导调整来构建强大的多图像LMM。因此,我们精心构建包含721k多图像指导数据的螳螂教学,以培训螳螂模型家族。教学调整使螳螂具有不同的多图像技能,例如共同参考,比较,推理和时间理解。我们评估了8个多图像基准和6个单图像基准的螳螂。Mantis -IDEFICS2可以在所有多图像基准上实现SOTA结果,并击败最强的多图像基线,即IDEFICS2-8B平均13个绝对点。值得注意的是,IDEFICS2-8B已在140m的交织多图像数据上进行了预训练,该数据比Mantis-Instruct大200倍。我们观察到螳螂在持有的基准和持有的基准上表现出色,这表明其概括能力。我们进一步评估了单图像基准上的Mantis,并证明Mantis在与COGVLM和EMU2相当的情况下还保持了强劲的单像性能。我们的结果表明,多图像能力不一定是通过大规模的预训练获得的,而是通过低成本的指导调整可以获得它们。螳螂的培训和评估为未来的工作铺平了道路,以提高LMMS的多图像能力。
摘要:研究氢在铜表面的解离吸附和复合脱附的动力学,使我们对表面化学有了原子级的理解,但迄今为止,通过实验确定这些过程的热速率(决定催化反应的结果)仍是不可能的。在这项工作中,我们使用反应动力学实验的数据确定了 200 至 1000 K 之间氢在 Cu(111) 上的解离吸附和复合脱附的热速率常数。与目前的理解相反,我们的研究结果表明,即使在高达 400 K 的温度下,量子隧穿仍然起着主导作用。我们还提供了 H 2 在 Cu(111) 上的反应势垒(0.619 ± 0.020 eV)和吸附能(0.348 ± 0.026 eV)的精确值。值得注意的是,热速率常数与基于环聚合物分子动力学新实现的表面反应第一原理量子速率理论高度一致,为使用可靠、高效的计算方法发现更好的催化剂铺平了道路。
摘要在这项研究中,我们发现了一种位于等离子体光子晶体(PPC)和传统光子晶体之间的界面上的边缘状态,该边缘取决于光子带隙的特性,而不是表面缺陷。模拟和理论分析表明,通过调整血浆密度,我们可以改变PPC的光子带隙的拓扑特征。这使其与传统PC的光子带隙不同,从而激发或关闭拓扑边缘状态。我们进一步讨论了血浆参数对边缘状态特征的影响,结果表明,随着血浆密度的增加,PPC的第一个光子带隙(PBG)关闭然后重新开放,从而导致频段反转和PPCS PBG特性的变化。我们可以通过等离子体控制边缘状态的产生,并调整边缘状态的频率和强度。在边缘状态出现后,随着等离子体密度的进一步增加,PPC的第一个PBG将向高频转移并加深。边缘状态的频率将转向更高的频率,其强度也会增加。我们通过增加阵列数量来增加PPC的第一个PBG深度,并发现当PPC阵列的数量增加时,只有边缘状态的强度会增加,而频率保持不变。因此,可以通过血浆密度和阵列数量参数来实现边缘状态频率和强度的灵活调整。我们的研究证明了血浆光子晶体中拓扑边缘状态的特性,我们认为这可以为基于边缘状态的应用提供一些指导。
摘要 目前,深度学习(DL)被广泛用于解决非常复杂的任务。然而,DL模型的训练需要庞大的数据集和漫长的训练时间。我们引入了一种新颖的量子实例选择(IS)方法,该方法将训练数据集的大小减少了多达 28%,同时保持了有效性,提高了训练效率和可扩展性。我们的方法利用量子退火(QA),一种特定的量子计算范式,可以解决优化问题。这是首次尝试使用 QA 解决 IS 问题,我们为其提出了一种新的二次无约束二元优化(QUBO)公式。对多个自动文本分类(ATC)数据集进行的大量实验表明,我们的解决方案是可行的,并且与当前最先进的 IS 解决方案具有竞争力。
摘要:由于成本效益和易于操作,室温长波红外(LWIR)检测器比低温溶液优先。当前未冷却的LWIR探测器(例如微量体计)的性能受到降低的灵敏度,缓慢的响应时间和缺乏动态光谱可调性的限制。在这里,我们提出了一个基于石墨烯的有效室温LWIR检测器,利用其可调的光学和电子特性,具有高检测性和快速响应时间。固有的弱光吸收可以通过与光腔耦合的图案化石墨烯上的狄拉克等等离子增强。通过不对称载体生成环境,通过Seebeck效应将吸收的能量转化为光伏。此外,通过静电门控实现8-12μmLWIR带中的动态光谱可调性。拟议的检测平台铺平了新一代未冷却的基于石墨烯的LWIR光电探测器,用于诸如分子传感,医学诊断,军事,安全和空间之类的广泛应用。关键字:红外探测器,石墨烯,二维材料,狄拉克等离子,光热效应