管理和培训下属的计划、报告和记录是永无止境的责任。每天,无论您是否意识到,您都在管理人员和计划并培训初级人员。两者都不嫌多。(尽管您的培训和管理计划中可能会有太多的文书工作,导致它们难以管理。)您的许多培训和管理都是非正式的。优秀的领导者会经常和本能地使用良好的技能。但是,某些培训领域的正式计划确实需要的不仅仅是本能。必须遵循上级发布的具体指令以符合特定标准。管理和培训,无论是正式的还是非正式的,都是重要的责任。所有高级燃气轮机系统技术人员都需要认真对待这些问题。
为了满足对廉价绿色氢气的需求,已经开发出专门用于氢气生产的风力涡轮机设计优化框架。该框架通过最小化氢气平准成本 (LCOH) 目标来优化风力涡轮机。初步案例研究结果显示,与使用我们框架的 LCOE 优化涡轮机相比,LCOH 降低了 1.53%。从基线参考涡轮机到 LCOH 优化涡轮机,LCOH 降低了 12.7%。从基线参考涡轮机到 LCOE 优化涡轮机,LCOE 降低了 12.35%。与基线和 LCOE 优化涡轮机相比,LCOH 优化涡轮机具有更大的转子,其中增加的涡轮机成本由增加的氢气产量抵消。本案例研究重点关注单个风力涡轮机-电解器系统,表明使用新的优化目标可以显着节省成本。通过工厂级优化以及包括太阳能电池板和电池存储等其他技术,可以进一步节省成本。
在飞机和发动机的各种系统中使用电力技术被认为是改善其基本特性最有前途的方向之一[1]。根据“全电动飞机”的概念,电能将应用于飞机的所有系统,包括燃气涡轮发动机的动力装置,目前仍使用液压和气动装置。“电动”燃气涡轮发动机(EGTE)无需压缩机和附件齿轮箱(AGB)的空气选择即可实现,它们驱动发动机和飞机的装置:泵、发电机、恒速旋转驱动器等。在其系统中,使用电动装置来驱动燃油泵和气路机械化装置。对于发动机转子的减重,有两种选择:使用普通滚动轴承和电动机驱动的润滑系统,以及使用不需要润滑的磁轴承。第二种选择前景更渺茫,因为制造难度较大
**** NEC U07A- 船用燃气轮机检查员 (MGTI) **** 正在为船用燃气轮机检查计划 (MGTI) 寻找高素质、积极主动的 GS。如有兴趣,请联系您当地的 MGTI 了解更多信息。
关于 JSW 能源:JSW 能源有限公司是印度领先的私营电力生产商之一,也是市值 230 亿美元的 JSW 集团的一部分,该集团在钢铁、能源、基础设施、水泥、体育等领域占有重要地位。JSW 能源有限公司已在电力行业的价值链中占据一席之地,在发电和输电领域拥有多元化资产。凭借强大的运营、健全的公司治理和审慎的资本配置策略,JSW 能源继续实现可持续增长,为所有利益相关者创造价值。JSW 能源于 2000 年开始商业运营,在卡纳塔克邦 Vijayanagar 投产了首批 2x130 兆瓦火力发电厂。从那时起,该公司的发电能力稳步提高,从 260 兆瓦增加到 7,189 兆瓦,拥有火力发电 3,508 兆瓦、风力发电 1,615 兆瓦、水力发电 1,391 兆瓦和太阳能 675 兆瓦的投资组合,确保了地域分布、燃料来源和电力采购安排的多样性。该公司目前正在建设总计 2.6 吉瓦的多个电力项目,目标是到 2030 年实现总发电能力达到 20 吉瓦。
关键词:控制系统、燃气涡轮发动机、液力机械系统、全权限数字电子控制 (FADEC)、数字电子发动机控制 (DEEC) 1.0 简介 任何发动机控制系统的目标都是让发动机在给定条件下以最高效率运行。此任务的复杂性与发动机的复杂性成正比。从历史上看,喷气发动机一直由液力机械控制系统控制,该系统由飞行员控制的简单机械连杆组成。随着发动机变得越来越复杂,控制信号越来越多,对性能和功能的要求越来越高,电子控制系统应运而生 [1]。当今用于飞机推进的现代航空发动机在过去 60 年中发展成为现在的形式,控制技术在提高性能、可靠性、使用寿命和安全性方面发挥着关键作用。今天,所有现代航空发动机都由全权限数字电子控制 (FADEC) 系统或电子和液力机械系统的组合控制。在许多这些系统中实现的控制功能并没有太大变化。仅使用燃料流量进行速度控制并限制瞬态过程中的流量的原理,就像在第一套液压机械系统中一样
注意:本报告是作为美国政府机构赞助的工作的记录而编写的。美国政府、其任何机构、其任何雇员、其任何承包商、分包商或其雇员均不对所披露的任何信息、设备、产品或流程的准确性、完整性或实用性做任何明示或暗示的保证,也不承担任何法律责任或义务,也不表示其使用不会侵犯私有权利。本文以商品名、商标、制造商或其他方式提及任何特定商业产品、流程或服务,并不一定构成或暗示美国政府、其任何机构或其任何承包商或分包商对其的认可、推荐或支持。本文表达的观点和意见不一定表明或反映美国政府、其任何机构或其任何承包商的观点和意见。
预计 27MW 水平轴风力涡轮机 (HAWT) 平台将成为 2040 年风力涡轮机的标准配置,叶片长度必须达到 145 米左右。这就需要叶片设计坚固,考虑到设计、生产、测试和运行中所有固有的不确定性,以准确预测使用寿命并获得可靠的维护间隔。超长叶片的纤细性需要更符合气动弹性的设计。此外,我们预计设计将以分段叶片为目标,不仅为了方便运输,而且还为了减少叶片本身和安装设备的搬运和安装负荷。未来的叶片将使用一种综合方法进一步优化,该方法将气动弹性和结构行为要求与使用寿命、坚固性和表面退化等考虑因素相结合。这种综合优化将涉及整个叶片设计,包括分段位置和连接技术。还确定了用于结构健康监测的集成传感器的最佳位置。这为自由形式设计优化程序带来了机会,例如用于设计叶片剪切载荷承载结构的拓扑优化。设计中的一些优化只能通过更自动化的制造来实现。提高生产线某些部分的重复质量,每天 24 小时不间断生产将减少出错空间并减少人工劳动。叶片部分
图 13 和 16 说明了宽带处理。对于压缩机后框架和涡轮中框架信号,处理通道 1 和 3 在 25 Hz 至 350 Hz 范围内执行宽带监控。这是为了捕获高压和低压轴运行速度频率之外的频率下的声学现象。图 16 说明了处理屏幕。每个信号的输出 1 以 RMS 速度(mm/sec 或 ips)表示,如图 17 所示。第二个输出 2 以 RMS 加速度(g)表示。
可在安装 GFE/SME 的情况下进行认证,但不能运行(电线束已封盖并存放,已安装“无效”标牌等)。在安装 GFE/SME 且处于非运行状态时,必须满足适用于飞机类型设计的 FAA 14 CFR 要求。FAA 14 CFR 第 21.3 部分 [故障、失灵和缺陷报告] 要求设计批准持有人向 FAA 报告类型认证产品(包括 CDA)的某些故障、失灵和缺陷。证书管理飞机认证办公室 (CMACO) 必须将 FAA 14 CFR 第 21.3 部分以及可能影响 CDA 的报告通知 MCO。如果 MCO 是 CMACO,则设计批准持有人必须直接向 MCO 报告。