Derek Michael Shah 先生 主席 Tetsuya Suzuki 先生 董事 Y. V. S. Sravankumar 先生 董事 Ajit Samal 先生 董事 Toru Yoshioka 先生 董事 Toshiya Tamura 先生 董事 Aloke Sarkar 先生 全职董事 Norio Sugimaru 先生 全职董事 Shekar Viswanathan 先生 独立董事 Vijaya Sampath 女士 独立董事
本文涉及永久运动的最佳能源收集系统设计。这种设计在促进新产生的新来源方面具有灵活性。电能的需求每天都在呈指数增长,因此有必要以低成本寻找替代的能源产生方式。此外,考虑一下化石燃料将要补充,因此除了化石燃料之外,还应使用其他资源。化石燃料的替代品是可再生能源。风能是可再生能源的主要来源之一。该系统中的永久运动是另一个新的创新。整个系统可用于产生电能,而不会对自然造成任何伤害。使用该系统,完全可以消除对连续自然风能来源的依赖。永久运动系统将产生风向能量收集系统,以便可以操作风力涡轮机发电机,然后产生电力。该系统也可以连续运行,而不取决于天气的当前状况。永久运动机(PMM)产生的能量通常会被科学界打折,因为它们在工业层面上被认为是不可能的,但是对于小型操作而言,PMM可能会变得非常有效。
作为技术转让示范的一部分,研究人员将 2D 翼型逆向设计工具 (INN- Airfoil) 集成到风力发电厂综合系统设计和工程模型 (WISDEM) 中,这是一个用于评估能源成本的多学科设计和优化框架。风力涡轮机设计的传统方法涉及从一组预先选定的 2D 翼型中创建 3D 叶片。然而,设计的多学科性质意味着空气动力学效率最高的翼型可能不是所有类型的风力涡轮机设计约束的最佳选择。
本作品部分由美国国家可再生能源实验室撰写,该实验室由可持续能源联盟有限责任公司运营,为美国能源部 (DOE) 服务,合同编号为DE-AC36-08GO28308。部分资金由美国高级研究计划署-能源 (ARPA-E) 设计智能促进强大的能源减少和实现新颖的完全有影响力的先进技术增强 (DIFFERENTIATE) 计划提供。本文表达的观点不一定代表美国能源部或美国政府的观点。美国政府保留,并且出版商在接受文章发表时承认美国政府保留非排他性、已付费、不可撤销的全球许可,可以出于美国政府目的出版或复制本作品的已出版形式,或允许他人这样做。本作品是美国政府作品,不受美国版权保护。
研究小组和行业使用风力涡轮机和风力发电厂的系统建模框架来设计风能系统,这些系统考虑了涡轮机和工厂层面的性能、成本和可靠性之间的关键权衡。这些框架使用各种多学科设计、分析和优化方法进行实施。为了提高互操作性和促进合作,本报告提出了一个沿着模型保真度和范围维度的框架分类系统。该分类系统首先受到对综合风力涡轮机和工厂模拟软件框架开发的最新进展的回顾。在每个主要的风力涡轮机和发电厂子系统中,都会为所使用的学科和每个学科可以建模的保真度级别开发一个矩阵。然后根据矩阵对现有框架进行分类。接下来,提出了一个本体,允许标准化框架中使用的最常见的学科保真度组合之间的数据传输方式。数据的通用表示可以实现以下功能:(1) 共享系统描述和分析结果,支持更透明的基准和比较,以及 (2) 将模型集成到组织内部和跨组织的工作流中,以提高风力涡轮机和发电厂设计流程的效率和性能。最终,这种集成将带来更好的整体风能系统设计,具有高性能和低成本。
除了结构紧凑、维护成本低之外,燃气轮机还可以使用多种燃料源,这使其成为高效生产能源的自然选择。 因此,在过去 40 年里,燃气轮机在电力行业(包括公用事业、工业工厂以及航空业)中的应用越来越广泛。 [6] 在联合循环运行中,当入口温度超过 1400°C 时,效率可高达 63%。 [2] 因此,人们采用了不同的策略来保护当前使用的镍基高温合金,例如沉积氧化钇稳定化氧化锆热障涂层 (TBC) 和强化薄膜冷却。然而,当考虑长时间使用(t>10000h)时,这一标准并不现实,因为TBC在900°C以上时会快速蠕变,再加上其热膨胀系数(CTE)与合金的热膨胀系数相差很大,会增加剥落的风险,并限制金属基部件在涡轮发动机中的使用。[7–10] 尤其是设想未来的燃气轮机将使用氢或氨等无碳燃料源,水蒸气是燃烧的主要产物之一,会加剧这些合金的降解。[5,11–13] 因此,为了减少温室气体排放和提高燃气轮机效率,需要用更坚固、耐氧化和腐蚀的材料来替代它们,这些材料可以在更高的温度下使用。由于密度低、热膨胀系数低(3-5.5×10−6K−1)、抗高温蠕变性和熔点高,Si3N4、SiC、SiC/SiC复合材料等非氧化物硅基陶瓷在燃烧环境中的应用非常突出[14–21]。
水电行业目前正在经历多项技术发展。新技术和实践不断涌现,使水电更加灵活和可持续。最近还开发了新材料来提高性能、耐用性和可靠性;然而,在文献中找不到系统的讨论。因此,本文介绍了用于水电应用的新材料,并讨论了它们的性能、优势和局限性。例如,复合材料可以将钢制设备的重量减轻 50% 至 80%,聚合物和超疏水材料可以将水头损失减少 4% 至 20%,新型轴承材料可以将轴承磨损减少 6%。这些改进决定了更高的效率、更长的使用寿命、减少浪费和维护需求,尽管某些材料的初始成本与传统材料的成本相比尚不具有竞争力。本文根据以下类别描述了新材料:用于涡轮机、水坝和水道、轴承、密封件和海洋水电的新材料。2021 作者。由 Elsevier LTD 代表中国工程院和高等教育出版社有限公司出版。本文为 CC BY-NC-ND 许可下的开放获取文章 ( http://creativecommons.org/licenses/by-nc-nd/4.0/ )。
Waygate Technologies 提供设备租赁和全方位服务解决方案,以满足您的特定需求。经验丰富的现场技术人员配备了大量最新检查技术(包括机器人爬行器、视频内窥镜和各种云台变焦摄像机),可以帮助您有效地检查涡轮叶片是否存在异常,尤其是表皮层压板和承载主梁之间的异常。我们的机器人爬行器使用目视检查彻底检查任何叶片剪切,以帮助确保适当的叶片平衡和抗弯曲性。
德克萨斯州 4-H 4-H 全区 STEM 研究项目名称:风力涡轮机年级:5 年级和 6 年级 TEKS:科学 5.1(A)、5.2 (A)(B)(C)(D)(F)(G)、(5.3 A)、(5.4 A)、(5.7 C) (6.7 A) 数学 (5.1 A, D)、(5.3 A, G, K)、(5.9 A, C)。课程名称:风力涡轮机 目标(2 到 4): 学习科学方法 步骤 了解可再生能源 练习 15 项 SET 能力(构建、分类、协作、演示、描述、对比、解决、设计、评估、假设、发明、推断、解释、测量和学习图形表示的基础知识) 用品:一个 Pico 涡轮机、风扇、码尺或卷尺 一个电压表,时间分配:60 分钟(建议至少进行 5 次试验,每次 10 分钟)探索内容:涡轮机以不同的距离暴露在风扇产生的风中,叶片角度也会发生变化。 词汇: 可再生能源:从人类时间尺度上自然补充的资源中收集的能量,例如阳光、风、雨、潮汐、波浪和地热。 风力涡轮机:通过因形状而产生升力来工作。 叶片:形状旨在以最小的成本从风中产生最大的功率。角度:风力涡轮机产生的电力将根据叶片的放置角度而变化,产生最大功率输出的角度为 45 度。伏特:电压或电位差的电气单位(符号:V)。一伏特定义为每库仑电荷消耗一焦耳的能量。
涡轮机在风洞中运行,本文描述了整体实验方法、面临的挑战、经验教训和未来工作的机会。这两项活动分别于 2018 年秋季和 2019 年秋季开展,使用迎面而来的风的预览扰动测量,分别测试了无约束和约束最佳叶片螺距控制器。具体而言,第一项研究考虑了线性二次调节器的扩展以包括前馈作用,而第二项研究部署了模型预测控制以将执行器约束纳入最优控制问题。这些活动的结果已经在控制系统技术会议和期刊论文中发表;但是,这些工作中没有包括如何实现控制器的细节。我们旨在通过这项针对风能社区的贡献来填补这一空白。我们描述了实验设置的几个方面,特别是提供了用于控制器的软件和硬件的细节;分享了对程序中几个困难方面的见解以及我们如何克服这些挑战;并总结了基于模拟的研究和物理测试之间的主要区别。通过这样做,我们希望分享我们学到的东西