摘要:太阳能检查需求的机器人任务敏捷和精确的对象检测策略。本文介绍了一个创新的基于关键的对象检测框架,专门为使用无人机实时的太阳能农场检查而设计。脱离常规边界框或细分方法,我们的技术着重于检测太阳能电池板的顶点,太阳能电池板的顶点比传统方法提供了更丰富的粒度。从Centernet中汲取灵感,我们的体系结构已针对Nvidia Agx Jetson Orin等嵌入式平台进行了优化,以1024×1376像素的分辨率达到接近60 fps,因此超过了相机的操作频率。这样的实时功能对于在时间关键的工业资产检查环境中有效的机器人操作至关重要。我们的模型的设计强调了减少的计算需求,将其定位为现实部署的实用解决方案。此外,积极学习策略的整合有望大大减少注释工作,并增强模型的运营可行性。总而言之,我们的研究强调了基于关键的对象检测的优势,为使用无人机的实时太阳能农场检查提供了一种实用有效的方法。
摘要本文在第一次介绍了我们称为Omnimorph的新型变形多旋翼无人驾驶飞机(UAV)的设计,建模和控制。变形能力允许选择优化能源消耗的配置,同时确保对所需任务的所需可操作性。可以在标准的点对点位移期间使用最能量的单向推力(UDT)配置。完全发射(FA)和全向(OD)配置可用于全姿势跟踪,例如,例如,当场恒定的态度水平运动和全旋转,用于全扳手6D相互作用控制和6D干扰拒绝。使用单个伺服电机可获得变形,从而可以最大程度地减少体重,成本和维持复杂性。研究了致动属性,并在现实的模拟中提出并验证了妥协和控制工作之间的最佳控制器。提出了原型的初步测试,以评估螺旋桨的相互空气动力学干扰。
摘要 - 无人驾驶汽车(UAVS)正在作为适应性平台发展,用于广泛的应用,例如精确的检查,紧急响应和遥感。自主无人机群需要在部署期间有效,稳定的通信才能成功执行任务。例如,所有群体成员之间的遥测数据的定期交换为形成和避免碰撞的基础提供了基础。但是,由于车辆的流动性和无线传输的不稳定性,保持安全可靠的全能通信仍然具有挑战性。本文根据Custom IEEE 802.11 Wi-Fi数据框架调查了经过加密和身份验证的多跳广播通信。索引条款 - 无人驾驶汽车,多跳网络,车辆网络,群飞行
Integrator VTOL的设计独特,旨在在船上(例如船甲板)中作为便携式系统运行,并在高海洋和阵风的挑战海上条件下运行。不需要固定的发射和恢复设备,可以在UAS硬件和有效载荷之间提供便携性,自给自足和模块化,同时最大程度地减少对其他飞行操作的影响。拥有超过24小时的耐力和一流的模块化有效载荷,独特的设计可提供三次改善范围和耐力,而不是混合VTOL。“集成商VTOL是一款无弹力的飞机系统,” Insitu总裁兼首席执行官Diane Rose说。“客户最终可以拥有一切:垂直发射和恢复,即使在最极端的海上环境和海洋国家,也没有牺牲宝贵的甲板空间,以行业领先的有效载荷能力和耐力,即使在最极端的海上环境和海洋国家中也是如此。”该系统有两个部分:耀斑
抽象无人机技术正在迅速发展,并且在培养操作过程中代表了显着的好处。本文提出了一种新型的方法,用于无人驾驶汽车(无人机)的自主装修任务。提议的无人机框架由一个本地规划师模块组成,该模块发现了无障碍物的路径,可以将车辆引导到目标区域。检测到目标点后,无人机计划采用最佳轨迹,以进行灭火球的精确弹道发射,从而利用其运动学。生成的轨迹最小化了整体遍历时间和最终状态误差,同时尊重无人机动态限制。在模拟和实际测试中都评估了所提出的系统的性能,并具有随机定位的障碍物和目标位置。该拟议框架已在国际无人飞机系统会议(ICUAS)的2022年无人机竞争中采用,在该竞赛中,它在模拟和实际情况下,在越来越多的困难越来越多的困难中成功完成了任务,从而在整体上获得了第三名。本文的视频附件可在网站上https://www.youtube.com/watch?v=_hdxx2xxkvq。
可以根据导致几个严重环境问题的各种因素观察到温度升高,尤其是全球变暖。城市地区是该温度升高最大的位置。城市热浓度,即所谓的热岛效应,在结构区域很高。这种情况导致人类的生命受到不利影响。因此,需要持续的测量和分析来评估城市地区的室外热舒适性和热应力。今天,无人驾驶飞机(UAV)系统被用作地球观察活动中的快速数据生产技术。集成到无人机系统中的热摄像机可以精确,不断地监测城市地区的温度值。本研究的重点是由于表面温度变量的快速响应,因此在局部规模上的无人机热摄像头系统的潜在应用。一个热摄像机无人机系统,用于测量地球表面的能量通量和温度,这是了解景观过程和响应不可或缺的一部分。因此,UAV热传感器直接用于TürkiyeKocaeli University工程大楼的不同土地覆盖类型。衍生的无人机表面温度与同时获得的原位温度测量值进行了比较。使用TFA SCANTEMP 410型号表面温度计获得同时进行陆地温度测量。Pearson与0.94系数之间的相关性利用了无人机表面温度与陆地测量之间的高相关性。可以得出结论,无人机安装的热摄像机系统是一种有前途的工具,它有更多的机会了解高空间和时间分辨率下的表面温度可变性。
泰米尔纳德邦。摘要在军事监视行动中使用无人机(UAV)近年来变得越来越受欢迎。隐形无人机的发展为军事监视提供了新的维度,使操作员能够进行秘密行动而无需被发现。本文的目的是探索隐形无人机进行军事监视的设计,开发和应用。本文讨论了隐形无人机的各种特征和技术。最后,本文审查了围绕使用无人机在军事行动中使用隐形无人机的一些道德和法律问题,总的来说,该论文得出结论,隐形无人机有可能彻底改变军事监视行动,为运营商提供强大的新工具,以收集情报和进行秘密行动。简介隐形无人机(UAV)是一种无人驾驶飞机,旨在通过雷达和其他检测技术无法检测到。隐形无人机的历史可以追溯到1960年代初的第一架无人侦察飞机的发展。这些早期的无人机旨在收集有关敌军的情报,主要用于监视和侦察任务。隐形无人机的开发始于1980年代,引入了高级材料和涂料,使飞机对雷达和其他检测技术的可见程度降低。第一个隐形无人机是洛克希德·马丁RQ-3黑暗之星,该明星专为长期监视任务而设计,并于1996年进行了首次飞行。黑暗的星星是用高级复合材料建造的,具有低调的设计,使得难以通过雷达检测到。另一个早期的隐形无人机是波音X-45A,该X-45A于2000年代初开发,并于2002年首次飞行。X-45A设计用于战斗行动,能够携带武器。它是用高级材料和涂料建造的,使其对雷达的看法降低,并配备了高级传感器技术,使其能够收集对敌军的情报。
火星在太阳系中与地球相邻,并具有相似的物理维度和地形,在过去的45亿年中,在太阳系中,行星的出生和演变提供了全面的记录[1,2]。因此,火星探索对于扩大人类居住空间和探索生命的起源至关重要[3]。超过40多个火星勘探任务已在全球实施,超过80%的人未能实现其预期目标。甚至成功降落的火星流浪者都面临着被困在沙坑中或经历机械故障的风险[4]。在20世纪,前苏联和美国发起了火星调查,但未能完成其勘探任务[5]。在21世纪,美国再次发起了核动力火星漫游者,好奇心,并获得了全面的火星环境数据。研究人员发现,火星上存在着脆弱的气氛,这使得可以开发火星无人机来帮助火星漫游者在火星气氛中运作,从而引起了学者的国内和国际关注[6,7]。目前,火星无人机在国外开发的主要包括四种类型:浮游气球[8],固定的翼无人机[9],旋转翼无人机[10]和流动翼无人机[11],如图1所示。关于气球浮游的研究很早就开始了;但是,由于一旦释放而难以控制它们及其有限的感应能力,因此他们没有得到广泛的调查。一旦他们的能量耗尽固定翼无人机,例如ARES [9],只能在高海拔高度释放后执行单个反应。
过去几年来,无人机 (UAV) 技术的应用领域及其采用率一直在稳步增长。商用无人机成本的下降使其应用范围比以往任何时候都更加广泛。然而,无人机复杂性的增加和成本的降低都导致了安全措施的缺失,并引发了新的安全问题。例如,当前的研究文献中几乎没有涉及无人机传感器测量结果不合理或被篡改的问题,因此需要研究界给予更多关注。本次调查的目的是广泛回顾有关常见传感器和通信漏洞、现有威胁以及针对无人机的主动或被动网络攻击的最新文献,并阐明文献中的研究空白。在本文中,我们描述了无人机系统 (UAS) 架构,以指出安全问题的根源。我们在综合比较表中评估了每项相关研究工作的覆盖范围和完整性,并将威胁、漏洞和网络攻击分为基于传感器和基于通信的类别。此外,对于每一种网络攻击,我们都描述了现有的对策或检测机制,并提供了确保无人机安全性和安全性的要求列表。我们还解决了传感器测量不可信的问题,并引入了对传感器数据进行可信度检查的想法。通过这样做,我们发现了提高安全性和安全性的其他措施,并报告了当前研究文献中没有得到很好体现的研究领域。
摘要。随着无线技术的快速发展,无人驾驶汽车(UAV)在自由空间光学(FSO)通信中的结合可以从覆盖范围,安全性和容量中获得一些好处。详细研究了用于分析此类系统的参数。由于湍流引起的褪色以及几何和未对准效应而导致接收到的光束中的辐照波动,以最大程度地减少位错误率。UAV雇用的FSO链接中涉及的随机变量大于FSO系统中存在的随机变量。因此,与地面陆地FSO链接相比,无人机的FSO系统的有效设计相对较具挑战。可以定义许多性能指标,并且需要进行分析,以优化与基于无人机的FSO系统相关的参数,并设计具有良好服务质量的链接。还探讨了一些最新方法,以进一步提高基于无人机的FSO网络的可靠性和覆盖范围。
