澳大利亚2。澳大利亚维多利亚州帕克维尔市墨尔本大学医学生物学系3. 分子医学部,哈里·珀金斯医学研究所,西澳大利亚州默多克,澳大利亚摘要背景:通过Adar酶将腺苷转化为RNA中的inosine insine insine酶,发生在人类转录组中的数千个地点,对于健康的大脑发育至关重要。 在许多神经精神疾病中,这种编辑过程失调,但尚未按单个神经元的水平进行大规模研究。 方法:我们在全长捕获核转录组中量化了RNA编辑位点,该位点的核转录组是来自六个神经型验尸后女性供体的六个皮质区域的3055个神经元的核转录组。 推定的编辑位点与包括健康和神经精神脑组织在内的散装人体组织转录组中的位点相交,并在无关脑供体的单个核中鉴定出的位点。 使用线性模型对细胞类型和皮质区域以及其中的各个位点和基因之间的差异编辑。 还测试了基因丰度与编辑之间的。 结果:我们在至少十个神经元核中鉴定了41,930个RNA编辑位点,具有可靠的读取覆盖率。 大多数站点位于内含子或3'UTR中的Alu重复序列中,并且在已发表的RNA编辑数据库中分类了约80%。 我们确定了9285个假定的新型RNA编辑位点,其中29%在无关供体的神经元转录组中也可检测到。 自闭症相关的基因富含预测可修饰RNA结构的编辑位点。澳大利亚维多利亚州帕克维尔市墨尔本大学医学生物学系3.分子医学部,哈里·珀金斯医学研究所,西澳大利亚州默多克,澳大利亚摘要背景:通过Adar酶将腺苷转化为RNA中的inosine insine insine酶,发生在人类转录组中的数千个地点,对于健康的大脑发育至关重要。在许多神经精神疾病中,这种编辑过程失调,但尚未按单个神经元的水平进行大规模研究。方法:我们在全长捕获核转录组中量化了RNA编辑位点,该位点的核转录组是来自六个神经型验尸后女性供体的六个皮质区域的3055个神经元的核转录组。推定的编辑位点与包括健康和神经精神脑组织在内的散装人体组织转录组中的位点相交,并在无关脑供体的单个核中鉴定出的位点。使用线性模型对细胞类型和皮质区域以及其中的各个位点和基因之间的差异编辑。。结果:我们在至少十个神经元核中鉴定了41,930个RNA编辑位点,具有可靠的读取覆盖率。大多数站点位于内含子或3'UTR中的Alu重复序列中,并且在已发表的RNA编辑数据库中分类了约80%。我们确定了9285个假定的新型RNA编辑位点,其中29%在无关供体的神经元转录组中也可检测到。自闭症相关的基因富含预测可修饰RNA结构的编辑位点。全球编辑率最强的相关性是SNORD115和SNORD116群集(15Q11)的snornas,该snornas已知可调节5-羟色胺受体加工并与ADAR2共定位。抑制性神经元比兴奋性神经元更高的总体转录组编辑。 此外,我们确定了在兴奋性神经元中优先编辑的29个基因和43个基因在包括RBFOX1,其靶基因的抑制性神经元中更严重,在自闭症相关的Prader-willi locus-Willi locus 15q11中,包括RBFOX1,其靶基因和小核仁RNA相关基因。 这些结果为1730个地点提供了细胞类型和空间上下文,这些位点在精神分裂症患者的大脑中差异化,自闭症患者中有910个部位。 结论:RNA编辑,包括数千个先前未报告的位点,在单个神经元核中可牢固地检测到,其中细胞亚型之间的基因编辑差异比皮质区域之间的差异更强。 抑制性神经元中自闭症相关基因的编辑不足可能在自闭症中这些细胞的特异性扰动中表现出来。抑制性神经元比兴奋性神经元更高的总体转录组编辑。此外,我们确定了在兴奋性神经元中优先编辑的29个基因和43个基因在包括RBFOX1,其靶基因的抑制性神经元中更严重,在自闭症相关的Prader-willi locus-Willi locus 15q11中,包括RBFOX1,其靶基因和小核仁RNA相关基因。这些结果为1730个地点提供了细胞类型和空间上下文,这些位点在精神分裂症患者的大脑中差异化,自闭症患者中有910个部位。结论:RNA编辑,包括数千个先前未报告的位点,在单个神经元核中可牢固地检测到,其中细胞亚型之间的基因编辑差异比皮质区域之间的差异更强。抑制性神经元中自闭症相关基因的编辑不足可能在自闭症中这些细胞的特异性扰动中表现出来。抑制性神经元中自闭症相关基因的编辑不足可能在自闭症中这些细胞的特异性扰动中表现出来。
从 700,000 名生物库参与者的数据中深入了解 DNA 重复扩增的原因和后果 Margaux LA Hujoel 1,2,3,*、Robert E. Handsaker 3,4,5、Nolan Kamitaki 1,2,3,6、Ronen E. Mukamel 1,2,3、Simone Rubinacci 1,2,3、Pier F. Palamara 7,8、Steven A. McCarroll 3,4,5、Po-Ru Loh 1,2,3,* 1 美国马萨诸塞州波士顿布莱根妇女医院和哈佛医学院医学系遗传学分部 2 美国马萨诸塞州波士顿布莱根妇女医院和哈佛医学院数据科学中心 3 美国马萨诸塞州剑桥麻省理工学院和哈佛大学布罗德研究所医学和群体遗传学项目 4 美国马萨诸塞州波士顿麻省理工学院和哈佛大学布罗德研究所斯坦利精神病学研究中心。 5 美国马萨诸塞州波士顿哈佛医学院遗传学系。 6 美国马萨诸塞州波士顿哈佛医学院生物医学信息学系 7 英国牛津大学统计学系 8 英国牛津大学人类遗传学中心* 通讯作者:mhujoel@broadinstitute.org (MLAH),poruloh@broadinstitute.org (P.- RL) 摘要串联 DNA 重复的扩增和收缩是人类群体和人类组织中遗传变异的来源:一些扩增的重复会导致遗传疾病,一些还会造成体细胞不稳定。我们分析了来自英国生物银行和“我们所有人”研究计划中 700,000 多名参与者的血细胞的 DNA 序列数据,并开发了新的计算方法来识别、测量和学习 15 个高度多态性的 CAG 重复位点的 DNA 重复不稳定性。我们发现,即使对于相同长度的等位基因,这 15 个基因座的扩张和收缩率也差异很大;不同基因座的重复序列在生殖系和血液中也表现出差异很大的相对突变倾向。TCF4 重复序列的高度体细胞不稳定性使得全基因组关联分析成为可能,该分析确定了七个基因座,在这些基因座上,遗传变异会调节血细胞中的 TCF4 重复不稳定性。其中三个相关基因座所含基因( MSH3 、 FAN1 和 PMS2 )也会调节亨廷顿氏病的发病年龄以及血液中 HTT 重复的体细胞不稳定性;然而,特定的遗传变异及其效应(不稳定性增加或减少)似乎是组织特异性和重复特异性的,这表明不同组织中的体细胞突变(或同一组织中不同重复的体细胞突变)是独立进行的,并受截然不同的遗传变异的控制。其他修饰基因位点包括 DNA 损伤反应基因 ATAD5 和 GADD45A。分析 DNA 重复扩增并结合临床数据显示,谷氨酰胺酶 (GLS) 基因 5' UTR 中的遗传重复与 5 期慢性肾脏疾病 (OR=14.0 [5.7–34.3]) 和肝脏疾病 (OR=3.0 [1.5–5.9]) 相关。这些结果和其他结果都指出了人类群体和整个人类生命周期中 DNA 重复的动态。
含有假定的 G-四链体形成序列的寡核苷酸(PQS;G ≥ 3 N x G ≥ 3 N x G ≥ 3 N x G ≥ 3)在阳离子存在下的生理缓冲条件下(Bochman 等人,2012 年)。由于其高热力学稳定性,组装的 G4 需要通过酶促分解。已经开发出体外用于监测 G4 形成的方法(Balasubramanian 等人,2011 年;Bryan 和 Baumann,2011 年)。使用这些方法已经证明了分解 G4 的酶活性。这些酶包括具有 G4 结合和解旋活性的 DNA 解旋酶,例如 BLM、WRN、PIF1、FANCJ、XPD、DNA2 和 RTEL1(Bochman 等人,2012 年;Maizels,2015 年)。使用计算机分析或荧光成像、免疫沉淀或 pull-down 实验来预测体内 G4 的形成,使用有价值的工具 - 例如特异性识别 G4 的免疫球蛋白和单链可变片段 (scFv) (Henderson 等人,2013)、G4 结合化合物 (Mendoza 等人,2016) 或 G4 结合蛋白 (Maizels,2015)。使用这些工具,可以通过免疫沉淀或针对纯化的基因组 DNA 或染色质的 pull-down 来识别 G4 位点,并且这些位点中的很大一部分重现了 PQS (Chambers 等人,2015;Hänsel-Hertsch 等人,2016;Lam 等人,2013;Muller 等人,2010)。 PQS 在基因的调控区(例如启动子、内含子或非翻译区 [UTR])中过度表达,包括致癌基因、重复区(例如端粒和 rDNA)和复制起点 (Maizels & Gray, 2013 )。使用抗体在人类细胞中进行的全基因组 G4 映射揭示了 G4 存在于基因调控区和端粒中 (Hänsel-Hertsch et al., 2016 ; Liu et al., 2016 )。许多 G4 被映射在转录起始位点周围,G4 形成的频率与相应基因的转录水平呈正相关 (Spiegel et al., 2021 ; Zheng et al., 2020 )。使用抗体对 G4-DNA 进行荧光标记,显示细胞核或染色体上存在颗粒状信号;一些信号位于端粒或着丝粒上 (Biffi et al., 2013; Henderson et al., 2013)。使用荧光标记化合物对 G4- DNA 进行可视化,可显示位于核仁中的较大信号,以及位于细胞核中的一些较小信号 (Rodriguez et al., 2012),或整个细胞核中均匀分布的信号 (Shivalingam et al., 2015)。然而,人们对使用体内成像获得的许多未表征信号的亚细胞或基因组位置了解甚少。越来越多的证据表明,在基因体内或周围形成的 G4 通过促进或抑制转录来调节基因活性 (Bochman et al., 2012; Mendoza et al., 2016)。尽管具有这些生物学含义,但 G4 在空间上阻碍了 DNA 复制和转录 (Bochman et al., 2012; Maizels, 2015)。这些生物事件的拖延会增加基因毒性损害的风险;G4 结构清除不足可能
卵巢癌是最致命的妇科恶性肿瘤,是女性癌症相关死亡的主要原因(Siegel 等人,2021 年)。尽管在治疗方面取得了一些进展,但晚期卵巢癌患者的 5 年相对生存率在过去几十年中并没有显着提高(Vaughan 等人,2011 年;Kuroki 和 Guntupalli,2020 年)。紫杉醇 (PTX) 属于紫杉烷类,是最广泛使用的抗肿瘤药物之一,被推荐作为多种癌症(包括卵巢癌和乳腺癌)的一线治疗。PTX 的作用机制是抑制微管的解聚,导致有丝分裂停滞延长,从而导致细胞死亡(Long 和 Fairchild,1994 年;Kavallaris,2010 年)。 PTX 和铂类化疗联合被公认为必不可少的治疗方法,尤其是在晚期病例中( Kuroki and Guntupalli,2020 )。然而,传统癌症疗法的持续使用会导致化学耐药性,并且很大一部分患者随着化学耐药性的产生而出现疾病复发。化学耐药性是一个棘手的问题,最终导致卵巢癌患者面临治疗失败和死亡( Pinato et al.,2013 )。虽然抗血管生成药物和 PARP 抑制剂等不同的靶向疗法在治疗持续性和复发性疾病方面显示出光明的前景,但它们尚未满足临床需求。因此,开发新的治疗方法对于卵巢癌患者来说迫在眉睫。多年来,联合治疗的概念已经被引入到癌症治疗的发展中( Bayat Mokhtari et al.,2017 )。有趣的是,传统中医药已在世界各地被广泛应用于各种癌症的补充和替代疗法。姜黄素 (Cur) 是从姜黄根茎中提取的天然酚类化合物,具有抗炎、抗氧化等全面的药理特性 (Zhang et al., 2015; Su et al., 2016)。先前的研究表明,Cur 可以发挥强大的抗癌特性,例如抑制癌细胞增殖和促进癌细胞死亡 (Xu et al., 2021)。Cur 还可以使癌细胞对一些化疗药物(如顺铂和吉西他滨)敏感,因此可用于多种癌症的联合治疗 (Yallapu et al., 2010; Yoshida et al., 2017; Zhang et al., 2017; Zheng et al., 2021)。此外,Cur 被 FDA 列为“公认安全 (GRAS)”化合物,支持其与传统化疗联合使用时的安全性和耐受性(Gupta 等,2013)。最近,几项临床前研究表明 Cur 增强了 PTX 介导的卵巢癌细胞细胞毒性,可能是一种有希望逆转癌症治疗中多种药物耐药性的药物(Liu 等,2016;Wei 等,2017)。然而,Cur和PTX联合治疗卵巢癌的治疗效果及其潜在的分子机制尚未完全揭示。微小RNA(miRNA)是约22个核苷酸的单链非编码RNA。miRNA可以通过靶向mRNA的3′非翻译区(3′UTR)参与翻译后修饰。已证明miRNA与肿瘤发生和肿瘤进展密切相关。miR-9-5p最近与癌症有关。越来越多的证据表明,miR-9-5p作为一种致癌iR,促进多种癌症(如非小细胞肺癌和前列腺癌)中的癌细胞增殖、侵袭和迁移(Li等,2017;陈
摘要自身免疫性由于免疫耐受性和自动反应性免疫细胞的激活而发展。大多数常见的自身免疫性疾病是多基因1表明多种信号通路中的失调。相比之下,在单基因的免疫力(IEI)中,这也可能导致自身免疫性,该疾病是由单个遗传缺陷触发的。因此,在IEI中发现的致病突变允许追踪导致人类自身免疫性的分子机制,从特定基因功能的缺陷到患者的临床和免疫学表型。在这里,我们发现了一名IEI患者具有全身性自身免疫性,这是由基因ZC3H12A中的私有纯合蛋白截短突变引起的,导致Regnase-1的缺乏,Regnase-1(一种调节性RNase 2-5)。流式细胞仪,大量T细胞转录组分析和单细胞RNA测序表明表达VCAM-1和IFNγ基因的γδT细胞的扩展。我们表明,Regnase-1直接靶向VCAM1的3 rth和IFNG mRNA的编码序列。这些发现突出了人类中一种新的自身免疫机制,其中regnase-1缺乏会导致VCAM1 + IFNG + T细胞的扩展及其与整合素α4β1-表达B细胞的相互作用,这表明IFN响应基因和激活的上调上调,导致系统自身免疫性。此外,我们表明VCAM1+ T细胞存在于供体的器官中,并在全身性红斑狼疮的患者的血液中扩展,这是一种常见的自身免疫性疾病,其特征是全身自身免疫性。他的父母和他的两个哥哥也很健康。1a和补充图新的单基因自身免疫性疾病患者P1诞生于第一个堂兄的亲密婚姻,患有未知原因的自身免疫性疾病。出生后不久,他出现了严重的水性腹泻,脾肿大,自身免疫性贫血和血小板减少症,所有这些都对皮质类固醇治疗有反应,后来对抗唑啉蛋白治疗反应了自身免疫性肝炎(图。1a)。他患有多种复发性呼吸道感染,最终导致支气管扩张(补充图1B),后来患有由水痘带状疱疹病毒(VZV)引起的脑膜炎。尝试了多次治疗试验,包括霉酚酸盐,利妥昔单抗,西洛氏菌和tocilizumab,但该患者对这些治疗造成了难治性,并最终产生了严重的骨髓纤维纤维化和输血依赖性。患者从HLA匹配的相关兄弟姐妹供体接受造血干细胞移植(HSCT)后(补充图1a),他完全植入了他的疾病临床表现。尽管如此,他还是出现了严重的皮肤移植与宿主疾病,并最终屈服于感染。在他的一生中,患者的血清IgG和IgM升高,但是IgA缺乏以及对蛋白质和多糖疫苗的反应降低(补充表1)。他有多种自身抗体,包括抗六抗细胞,抗肝kidney微粒体,抗平滑肌,抗双束DNA和抗核抗体(补充表1)。此外,我们发现患者的抗IFNα和抗IFNΩ自身抗体升高(图1C)。1b),可能影响了他的IFN介导的抗病毒药反应,解释了VZV脑膜炎和对呼吸道病毒感染的敏感性。血清细胞因子的分析显示,患者的IL-6升高,偶尔会升高IFNγ,而IL-10和TNFα与对照组没有显着差异(补充图外周血单核细胞(PBMC)的流式细胞术分析显示,患者中γδT细胞的扩大,占所有PBMC的21.4%,这些细胞中有96.9%是非Vδ2(图1C;补充表2)。,有54%表达CD8(补充图2a)。此外,患者P1(T细胞的68.3%)的常规CD8+ T细胞也增加了,这些细胞中的大多数具有CD27 – CD45RA+细胞毒性终止分化的效应子记忆(TEMRA)表型(65.3%的CD8+ T细胞;