摘要 — 对话式脑人工智能接口 (BAI) 是一种新型脑机接口 (BCI),它使用人工智能 (AI) 帮助有严重语言障碍的人进行交流。它通过先进的 AI 对话代理将用户的广泛意图转化为连贯的、特定于上下文的响应。BAI 中意图翻译的一个关键方面是解码代码调制的视觉诱发电位 (c-VEP) 信号。本研究评估了五种不同的人工神经网络 (ANN) 架构,用于解码 BAI 系统中基于 c-VEP 的 EEG 信号,强调了轻量级、浅层 ANN 模型和使用来自其他参与者的数据进行预训练策略以增强分类性能的有效性。这些结果为 ANN 模型在解码基于 c-VEP 的 EEG 信号中的应用提供了宝贵的见解,并可能使其他基于 c-VEP 的 BCI 系统受益。索引术语 — 脑-人工智能接口 (BAI)、c-VEP、EEG、chatgpt、人工神经网络 (ANN)。
1 CIBIT – 科英布拉大学科英布拉生物医学成像和转化研究中心,科英布拉,葡萄牙 2 ICNAS – 科英布拉大学健康应用核科学研究所,科英布拉,葡萄牙 3 ISR – 科英布拉大学系统与机器人研究所,科英布拉,葡萄牙 4 IPT – 托马尔理工学院,托马尔,葡萄牙 5 FCTUC – 科英布拉大学科学与技术学院,科英布拉,葡萄牙 6 FMUC – 科英布拉大学医学院生理学系,科英布拉,葡萄牙 7 LASI – 联合实验室,吉马良斯,葡萄牙 8 LASI – 北里约格兰德联邦大学 (UFRN) 脑研究所,巴西 * 同等贡献 通讯作者 (Miguel Castelo-Branco) 的电子邮件地址:mcbranco@fmed.uc.pt 资金:FCT/UIDP&B/4950
摘要 - 大脑计算机界面(BCIS)的快速演变显着影响了人类计算机相互作用的领域,具有稳态的视觉诱发电势(SSVEP),作为一种尤其是强大的范式。这项研究探讨了高级分类技术利用可解释的模糊转移学习(IFUzzyTL)来增强基于SSVEP系统的适应性和性能。最近的努力通过创新的转移学习方法加强了减少校准要求,从而通过策略性地应用域适应性和很少的动作学习策略来完善跨主题的生成性并最大程度地减少校准。深度学习中的开创性发展还提供了有希望的增强功能,促进了稳健的领域适应性,并显着提高了SSVEP分类的系统响应能力和准确性。但是,这些方法通常需要复杂的调整和广泛的数据,从而限制了立即适用性。ifuzzytl引入了一个自适应框架,该框架将模糊逻辑原理与神经网络体系结构相结合,重点关注有效的知识传递和域自适应。ifuzzytl通过整合模糊的推理系统和注意机制来完善人类干预格式的输入信号处理和分类。这种方法通过有效管理脑电图数据的固有可变性和不确定性来增强模型的精度,并与现实世界的运营需求保持一致。在三个数据集中证明了该模型的功效:12JFPM(1s的12JFPM(89.70%精度为149.58),基准(ITR为85.81%,ITR的精度为85.81%),ITR的准确性为213.99)和Eldbeta(76.50%的IT and and and and ath and and and and and and and and and and and and and and and aft)and 94.63)和94.63)和94.63) SSVEP BCI性能的基准。
Sabo 目前是史密斯堡阿肯色大学阿肯色州小企业和技术发展中心的区域主任。Sabo 对路易斯安那州并不陌生,在担任阿肯色州现任职务之前,他曾担任新奥尔良商业联盟的食品、音乐和技术总监;他还在新奥尔良市长 Mitch Landrieu 手下工作,实施白宫经济发展计划,为非传统技术候选人创造培训和职业道路,让他们接受入门级技术工作的培训。
2 7 7 7 06 06 The GH eight 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 1 1 1 1 1 0 1 1 ... 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 magco 0 0 0 0 0 0 0 0 0 5黄色5 6 4 7 7 7 7 7 7 06 5 5 5 5 5 5 5 5 5 5 5池塘2 div>
代码调制视觉诱发电位 (cVEP) 在脑机接口 (BCI) 社区中越来越受欢迎 [1]。这种方法采用伪随机视觉闪烁,具有校准时间短等优势,因为只需要学习一个代码。其他解码方法,如按位解码 [2],已经实现了具有灵活解码周期的自定节奏 BCI。尽管取得了这些进步,但基于 cVEP 的 BCI 仍然主要在实验室环境中进行研究,因为每次使用前都需要重新校准。这一限制与所有 BCI 范式共有的跨会话和跨受试者差异有关。BCI 的这些差异源多种多样 [3],包括解剖学差异(例如灰质数量变化)、人为因素(例如教育水平和生活习惯差异)或生理因素(例如疲劳、注意力水平和压力水平)。此外,神经生理学差异(例如特定频率范围内频谱功率调制的变化)也会导致这些变化。为了解决这些变化源,人们进行了广泛的研究 [4, 3] 以提出新方法。评估迁移学习方法有两种主要设置,具体取决于目标对象可用的信息量。在最独立的设置中,称为领域泛化,没有来自目标对象的信息,因此模型是在数据上进行训练的
摘要 - 大脑计算机界面(BCI)使人们能够直接与外围设备进行通信和操作。由于其快速通信速率和高信号噪声比,近年来,基于稳态的视觉诱发电位(SSVEP) - 基于BCI的系统已被广泛研究。许多当前的SSVEP识别方法通过发现最大的相关系数来确定目标类别。但是,当最大的系数与其余值没有显着差异时,分类性能通常会降低。这项研究提出了一种基于贝叶斯的分类置信估计方法,以增强基于SSVEP的BCI系统的目标识别性能。在我们的方法中,使用基本目标识别方法产生的最大值和其他值之间的差异用于在训练过程中定义特征向量。使用高斯混合模型(GMM)来估计正确与错误分类的特征向量的概率密度函数。随后,在测试程序中通过贝叶斯推断计算出准确和错误分类的后验概率。基于两个后验概率提出了分类置信值(CCVALUE),以估计分类信心。最后,决策规则可以确定是否应接受或拒绝当前的分类结果。对开放式基准数据集和自收集的数据集进行了广泛的评估研究。实验结果证明了提出的方法提高基于SSVEP的BCI系统的可靠性的有效性和可行性。
在成年人中,依托泊苷的总体清除与肌酐清除率,低血清白蛋白浓度和非肾脏清除相关。在肝功能障碍的成年癌症患者中,依托泊苷的总体清除率不会降低。接受依托泊苷的肾功能受损患者的总体清除率降低,AUC增加并降低稳态分布量(请参阅4.2剂量和给药方法)。在儿童中,SGPT水平升高与药物总体清除率降低有关。事先使用顺铂也可能导致儿童依托泊苷的总体清除率降低。需要进一步的研究以确定依托泊苷身体清除率降低的患者是否需要修饰剂量
图1 |提出的方法的示意图。a。校准阶段(红色)组成了由WN序列调制(表示为刺激A)的单个目标刺激,然后在40个螺丝体上测试(蓝色),该速度由不同的WN序列调制(表示为刺激b),b。线性建模方法,其中空间滤波器是通过受试者依赖(红色)或独立(灰色)数据获取的,时间模式是从刺激和TRF之间的卷积中获取的时间模式,其中空间滤波器是从受试者的依赖性数据中获取的空间滤波器,并通过权重的交叉模式获得了额外的次数,并将其依赖的额定值(nipled)的额定值(当时的均值均匀)(当时的额外)获得(当时的蓝色)。从交叉对象的校准数据(表示为浅红色)中学到。