辐射束的RMS半径由两个竞争效应确定:光学引导(光束聚焦)和衍射(梁膨胀)。最小辐射半径大约是Fodo晶格中X和Y电子束半径的较大。
辐射脉冲宽度(电子束)是单个光谱尖峰宽度的傅立叶缀合物。在时间域中的总体电子束(D T)越长,能量(频率)域中的光谱尖峰宽度(DE)越窄。
最初,光电子能谱是使用原子灯作为单能 VUV 光子源进行的,但激光的出现大大提高了这种技术的分析能力。具体而言,将激光源聚焦到小点的能力使得能够分析发射电子相对于样品的角轨迹(即参考晶体材料中的晶格矢量)。这通常通过相对于电子能量分析仪逐步旋转样品台来完成。角分辨光电子能谱 (ARPES) 能够详细测量重要信息,例如费米面的形状,它是倒易晶胞矢量 (kx , ky ) 的函数。一些研究人员还采用一种称为莫特偏振仪的设备,主要测量电子的自旋。
上下文。大多数观察到的系外行星的平衡温度高(T EQ> 500 K)。了解其大气的化学和解释其观察结果需要使用包括光化学在内的化学动力学模型。这些模型中使用的真空紫外线(VUV)吸收横截面的热依赖性在高温下是鲜为人知的,从而导致不确定性在产生的丰度谱。目标。我们工作的目的是通过实验研究外部大气的VUV吸收横截面的热依赖性,并提供准确的数据以在大气模型中使用。这项研究的重点是乙炔(C 2 H 2)。方法。我们使用VUV光谱和同步辐射测量了七个温度下的C 2 H 2的吸收横截面,在115-230 nm光谱结构域中记录的296至773 K。这些数据在我们的一维热化学模型中使用,以评估它们对通用热木星样系外行星气氛的预测组成的影响。结果。C 2 H 2的绝对吸收横截面随温度而增加。这种增长从115 nm相对恒定,并从185 nm急剧上升到230 nm。这种变化还影响了其他副产品(例如甲烷(CH 4)和乙烯(C 2 H 4)的丰富曲线。结论。我们介绍了在高温下C 2 H 2的VUV吸收横截面的第一个实验测量。使用该模型计算的C 2 H 2的丰度曲线显示出略有变化,当使用C 2 H 2吸收横截面与296 K相比,在773 K时测量的5×10-5 bar接近40%,与296 K相比。这是由1530 nM的吸收率较高的230 nM,该吸收率在296 K中。光谱范围。需要对其他主要物种进行类似的研究,以提高我们对系外行星气氛的理解。
I. 引言 经认证可用于太空的材料具有特殊性能(例如重量轻、抗电离辐射、多功能能力、自愈能力和出色的热稳定性),使得它们可以在电离辐射、极端温度、微陨石和深真空等环境中生存。许多太空应用需要在材料表面涂上涂层以保护材料或改变其性质。用于航天器的材料及其涂层都必须易于使用、排气性低且在太空环境中稳定。然而,尽管具有独特的特性,但太空对于航天器上使用的材料(尤其是其外表面)来说是一个恶劣的环境。由于紫外线和粒子损伤等不同的外部因素,大多数这些材料都会出现一定程度的退化。航天器设计的关键方面之一是热控制系统,其功能是将航天器系统的温度保持在其工作范围内。遥远行星际空间中航天器某一区域的绝对温度
• Complementary metal-oxide-semiconductor (CMOS) image sensors and charge coupled devices (CCD) • Image sensor design and customization • Sensor characterization and calibration • Radiation damage effects in space • Interaction of radiation with matter, shielding • Semiconductor physics and device simulations • Cryogenics and vacuum • Electronics
描述了一种绝对测量等离子体边缘真空紫外 (VUV) 光子通量的新方法。让等离子体产生的光撞击远离等离子体的带负偏压的镀金铜基板。测量由此产生的光电子发射电流,然后根据已知的 Au 光电子产额找到绝对光子通量。该方法用于量化氩/氦电感耦合等离子体 (ICP) 产生的 VUV 光量。观察到 104.82 和 106.67 nm 的强发射,对应于氩的 1s 2 和 1s 4 共振态。在远程位置测得的最大积分 VUV 光子通量为 3.2 × 10 13 光子/cm 2 s。估计这对应于 ICP 边缘 5 × 10 15 光子/cm 2 s 的通量,在类似条件下报告的值范围内。
描述了一种绝对测量等离子体边缘真空紫外 (VUV) 光子通量的新方法。让等离子体产生的光撞击远离等离子体的带负偏压的镀金铜基板。测量由此产生的光电子发射电流,然后根据已知的 Au 光电子产额找到绝对光子通量。该方法用于量化氩/氦电感耦合等离子体 (ICP) 产生的 VUV 光量。观察到 104.82 和 106.67 nm 的强发射,对应于氩的 1s 2 和 1s 4 共振态。在远程位置测得的最大积分 VUV 光子通量为 3.2 × 10 13 光子/cm 2 s。估计这对应于 ICP 边缘 5 × 10 15 光子/cm 2 s 的通量,在类似条件下报告的值范围内。
摘要:已研究了液相有机化合物碳二硫化物(CS 2)的真空紫外线(VUV)光解析。在每个氮环境和大气空气环境中,在微腔等离子体灯的Si底物上照射了SI底物上的自胸膜灯的172 nm(7.2 eV)VUV光子。在反应期间,在不同气体环境中观察到CS 2在C-C,C-C,C-S或C-O-S基片段中的选择性和快速分离。薄层聚合物微型沉积物。这款来自VUV微质量灯的新型照片过程引入了大面积沉积的低温有机(或合成)转换的另一种途径。可以在光电和纳米技术应用中使用各种有机前体的原位,选择性转换。