在最先进的设施中,教职员工和学生合作进行了研究,从化学的传统子学科到高度多学科的研究,重点是能源,催化,化学生物学和材料科学。由于有利的研究生与教师的比例,在高级仪器和计算资源方面获得丰富的动手经验的机会。研究生被鼓励遵循高度个性化的学习计划。我们为奥本被列为研究活动水平最高的机构的前100名列出了奥本(Auburn)的事实。我们的部门始终获得高级排名,包括No.4计划在2016年GradurePrograms.com发布的顶级化学研究生课程列表中。
它的优雅表达了某种无法用语言描述的东西。水晶的多样和独特的形状一直令人着迷。也许是它的硬度传达了一种持久的感觉。或者是因为它是在山深处形成的,只有经过漫长而艰辛的旅程才能出现。或许是因为它起源和形成的细节将永远是个秘密。无论如何,有一件事是肯定的:它的美丽激发了想象力。
摘要:由于不连续的动力学以及高维状态和动作空间,机器人的操作具有挑战性。在操纵任务中成功的数据驱动方法通常需要大量数据和专家证明,通常来自人类。现有的计划者仅限于特定系统,并且通常依靠用于使用演示的专业算法。因此,我们引入了一名灵活的运动计划者,该计划量身定制了灵巧和全身锻炼任务。我们的计划者可以为增强学习算法创建可用的演示,从而消除了对额外的培训管道复杂性的需求。使用这种方法,我们可以有效地学习复杂的操纵任务的政策,仅传统的强化学习只会取得很少的进步。此外,我们证明了学习的政策可以转移到真正的机器人系统中,以解决复杂的灵巧操纵任务。项目网站:https://jacta-manipulation.github.io/
基因组编辑技术发展的最终目标是实现任何细胞或生物体中精准的基因组改变。本文我们描述了原生质体系统,该系统利用预组装的 Cas9 核糖核蛋白 (RNP) 复合物在拟南芥、本氏烟、白菜和亚麻荠中实现精准、高效的 DNA 序列改变。Cas9 RNP 介导的双 gRNA 基因破坏在拟南芥原生质体中可达到约 90% 的插入/缺失。为了便于测试任何 Cas9 RNP 设计,我们开发了两个 GFP 报告基因,从而可以灵敏地检测非同源末端连接 (NHEJ) 和同源定向修复 (HDR),编辑效率分别高达 85% 和 50%。当与最佳单链寡脱氧核苷酸 (ssODN) 供体共转染时,RNP 通过 HDR 对 AtALS 基因的精确编辑达到 7%。值得注意的是,预组装引物编辑器 (PE) RNP 介导的精确诱变导致原生质体中 GFP 报告基因回收率为 50%,基因组中特定 AtPDS 突变的编辑频率高达 4.6%。原生质体中 CRISPR RNP 变体的快速、多功能和高效基因编辑为开发、评估和优化基因和基因组操作的新设计和工具提供了宝贵的平台,适用于多种植物物种。
• ISO/IEC MPEG =“运动图像专家组” ISO/IEC JTC 1/SC 29/WG 11 = 国际标准化组织和国际电工委员会,联合技术委员会 1,分委员会 29,第 11 工作组(持续活跃,目前正在 SC29 内部重组) • ITU-T VCEG =“视频编码专家组” ITU-T SG16/Q6 = 国际电信联盟 - 电信标准化部门,第 16 研究组,第 3 工作组,第 6 号问题 • JVT =“联合视频团队”由 MPEG 和 VCEG 合作组成,负责开发 AVC(2009 年停止) • JCT-VC =“视频编码联合合作团队”由 MPEG 和 VCEG 合作组成,负责开发 HEVC(成立于 2010 年 1 月) • JVET =“联合视频专家团队”,探索超越 HEVC 的新技术潜力(成立于 2010 年 10 月) 2015 年成立为联合视频探索小组(2018 年 4 月更名)
lspr是它们独特的光学特性之一,可以考虑扩大周围分析物分子的拉曼信号。通过仔细控制其大小,形状和间距间距,可以使Aunps展示LSPR,从而使其成为提高SERS信号的理想候选者。au已被许多研究人员广泛用于SERS主动底物。24 - 31然而,由于乏味的途径和使用刺激性化学物质,合成Aunps的合成一直在具有挑战性。32 - 38在这里,通过使用Dime-thyylformamide(DMF)的简单明了的方法,使用金氯化水合物(Haucl 4 $ 3H 2 O)合成金纳米颗粒(AUNP)。39 - 41使用DMF作为溶剂和还原剂,以前已经表明,金,银和其他金属的金属纳米结构可以以各种方式形成。42 - 44这里,引入了一个简单的途径,以直接在PAN/DMF解决方案中合成AUNP。这种方法具有无表面活性剂合成的好处。同时,聚合物纳米复合材料不仅增强了整体表面特性,还可以支持可重复使用的lm。45
摘要:有机半导体中的三重态激发态通常是光学的黑暗和长寿的,因为它们具有自旋孔向单线基态的旋转过渡,因此在轻度收获的应用中阻碍了过程。此外,三胞胎通常会对系统造成损害,因为它们可以使反应性单线氧的形成敏感。尽管有这些不利的特征,但存在我们可以利用三胞胎状态的机制,这构成了本综述的范围。开始对三胞胎状态问题的简短探索,我们继续阐明有机材料中三重态利用的主要机制:1。磷光(pH),2。热活化的延迟荧光(TADF)和3。三重态 - 三胞胎歼灭(TTA)。在每个部分中,我们都会揭示其工作原则,强调其广泛的应用程序,并讨论其局限性和观点。我们特别注意在有机发光二极管(OLEDS)中使用这些机制,因为OLEDS是有机半导体的最繁荣的商业应用。本综述旨在为读者提供见解和机会,以与有机半导体的光物理特性和设备物理学进行研究,尤其是在利用三胞胎状态的潜力方面。关键字:磷光,TADF,TTA,三胞胎状态,交叉Intersystem cropsing■简介
为了促进从化石到可再生能源的转移,需要存储以应对太阳,风能和波浪功率等技术的间歇性质。一种存储替代方案是基于电池的固定能量存储。有许多电池类型可供选择,但是镍金属氢化物(NIMH)是特别适合的类型。这些电池具有高的能量密度,一个较大的温度操作窗口,是大规模存储的安全替代方案。在本文中,研究了NIMH电池的行为,目的是开发动态电池模型,该模型能够复制电池电压和压力,也用于动态使用。这种模型可用于促进NIMH电池的开发,改进电池管理系统(BMS)中使用的算法,质量控制以及储能系统的尺寸。这些改进可以导致固定的能量存储,并具有更高的效率和更长的可用寿命。为了提高对电池功能的理解,对NIMH电池典型的两种行为进行了更深入的研究,并被认为对电池有很大的影响:开路电压(OCV)磁滞和电池气体相的行为。OCV磁滞会使建模复杂化,因为它会导致电池休息电压在一定程度上取决于到达那里所需的充电/排放路径。OCV磁滞对于所有电池都不明显,对于NIMH电池来说尤其突出。然后将氧气在负电极处重新组合到水中。NIMH电池中的气相是有效的,因为电解质是水性的,并且在操作过程中的电压窗口会导致正电极处的氧气演化。由于对负金属氢化物电极上氢平衡压力的依赖性和氢平衡压力的依赖性,气相中的氢量在周期内有所不同。分别开发了两个模型以研究这些行为。模型显示出良好的定性生殖能力。还使用结构分析方法研究了磁滞现象。在相同的电荷状态下的两个阳性电极材料样品之间的材料结构中发现了差异,但滞后状态不同。这些差异是