摘要:分类为六个超家族的解旋酶是利用从ATP水解到重塑DNA和RNA底物的能量的机械酶。这些酶在各种细胞过程中具有关键作用,例如翻译,核糖体组装和基因组维持。解旋酶,并且许多病毒表达的旋转酶是其致病性所必需的。因此,解旋酶是化学探针和治疗剂的重要靶标。但是,开发针对构象动力学高构酶的化学抑制剂的化学抑制剂非常具有挑战性。我们认为,在化学蛋白质组学研究中使用的电力“侦察片段”可以利用用于开发共价抑制剂的解旋酶的抑制剂。我们采用了一种功能优先的方法,将酶试验与对映体探针对和质谱分析相结合,以开发一种共价抑制剂,该抑制剂有选择地靶向SARS-COV-2 NSP13中的变构位点,一种超级家庭-1解旋酶。此外,我们证明了侦察片片段抑制了与基因组维持有关的两个人类超家族酶BLM和WRN的活性。一起,我们的发现提出了一种发现在构象动态机械酶中发现共价抑制剂起点和可药物变构位点的方法。
深度神经网络 (DNN) 是图像、语音和文本处理的最新技术。为了解决训练时间长和能耗高的问题,自定义加速器可以利用稀疏性,即零值权重、激活和梯度。提出的稀疏卷积神经网络 (CNN) 加速器支持使用不超过一个动态稀疏卷积输入进行训练。在现有的加速器类别中,唯一支持双面动态稀疏性的是基于外积的加速器。然而,当将卷积映射到外积时,会发生与任何有效输出都不对应的乘法。这些冗余笛卡尔积 (RCP) 降低了能源效率和性能。我们观察到在稀疏训练中,高达 90% 的计算都是 RCP,它们是由 CNN 训练后向传递期间大矩阵的卷积产生的,用于更新权重。在本文中,我们设计了一种机制 ANT 来预测和消除 RCP,与外积加速器结合使用时可以实现更高效的稀疏训练。通过预测超过 90% 的 RCP,在使用 DenseNet- 121 [ 38 ]、ResNet18 [ 35 ]、VGG16 [ 73 ]、Wide ResNet (WRN) [ 85 ] 和 ResNet-50 [ 35 ] 的 90% 稀疏训练中,ANT 比类 SCNN 加速器 [67] 实现了 3.71 倍的几何平均速度提升,能耗降低了 4.40 倍,面积增加了 0.0017 平方毫米。我们将 ANT 扩展到稀疏矩阵乘法,以便同一个加速器可以预测稀疏全连接层、Transformer 和 RNN 中的 RCP。
含有假定的 G-四链体形成序列的寡核苷酸(PQS;G ≥ 3 N x G ≥ 3 N x G ≥ 3 N x G ≥ 3)在阳离子存在下的生理缓冲条件下(Bochman 等人,2012 年)。由于其高热力学稳定性,组装的 G4 需要通过酶促分解。已经开发出体外用于监测 G4 形成的方法(Balasubramanian 等人,2011 年;Bryan 和 Baumann,2011 年)。使用这些方法已经证明了分解 G4 的酶活性。这些酶包括具有 G4 结合和解旋活性的 DNA 解旋酶,例如 BLM、WRN、PIF1、FANCJ、XPD、DNA2 和 RTEL1(Bochman 等人,2012 年;Maizels,2015 年)。使用计算机分析或荧光成像、免疫沉淀或 pull-down 实验来预测体内 G4 的形成,使用有价值的工具 - 例如特异性识别 G4 的免疫球蛋白和单链可变片段 (scFv) (Henderson 等人,2013)、G4 结合化合物 (Mendoza 等人,2016) 或 G4 结合蛋白 (Maizels,2015)。使用这些工具,可以通过免疫沉淀或针对纯化的基因组 DNA 或染色质的 pull-down 来识别 G4 位点,并且这些位点中的很大一部分重现了 PQS (Chambers 等人,2015;Hänsel-Hertsch 等人,2016;Lam 等人,2013;Muller 等人,2010)。 PQS 在基因的调控区(例如启动子、内含子或非翻译区 [UTR])中过度表达,包括致癌基因、重复区(例如端粒和 rDNA)和复制起点 (Maizels & Gray, 2013 )。使用抗体在人类细胞中进行的全基因组 G4 映射揭示了 G4 存在于基因调控区和端粒中 (Hänsel-Hertsch et al., 2016 ; Liu et al., 2016 )。许多 G4 被映射在转录起始位点周围,G4 形成的频率与相应基因的转录水平呈正相关 (Spiegel et al., 2021 ; Zheng et al., 2020 )。使用抗体对 G4-DNA 进行荧光标记,显示细胞核或染色体上存在颗粒状信号;一些信号位于端粒或着丝粒上 (Biffi et al., 2013; Henderson et al., 2013)。使用荧光标记化合物对 G4- DNA 进行可视化,可显示位于核仁中的较大信号,以及位于细胞核中的一些较小信号 (Rodriguez et al., 2012),或整个细胞核中均匀分布的信号 (Shivalingam et al., 2015)。然而,人们对使用体内成像获得的许多未表征信号的亚细胞或基因组位置了解甚少。越来越多的证据表明,在基因体内或周围形成的 G4 通过促进或抑制转录来调节基因活性 (Bochman et al., 2012; Mendoza et al., 2016)。尽管具有这些生物学含义,但 G4 在空间上阻碍了 DNA 复制和转录 (Bochman et al., 2012; Maizels, 2015)。这些生物事件的拖延会增加基因毒性损害的风险;G4 结构清除不足可能