运动想象信号由用户生成,在基于脑电图的系统中,该信号记录在头皮上;然而,头皮上记录的信号不仅取决于所涉及神经元的位置,还取决于神经元树突的方向,这会影响电流的方向 [6]。因此,不同用户的 MI 信号会有所不同,为一个用户训练的分类器不能轻易用于另一个用户 [7],[8]。即使对于同一个用户,也常常需要频繁重新校准,以适应生成的运动想象信号中可能出现的漂移 [9],[10]。有许多迁移学习尝试使用现有数据以无监督的方式为新用户训练分类器,即使用新用户的未标记校准数据 [11]。在这些方法中,子空间对齐 [12] 找到了一种线性映射来将特征从源域适配到目标域,但是,它不使用源域中的可用标签。
这项研究调查了通过将加权盒融合(WBF)整合在KERAS CV框架中,从而提高了Yolov8对象检测性能的潜力。Yolov8由于其速度,准确性和现实世界中的良好声誉而被选择。KERAS CV:简化WBF实施这项工作的关键方面涉及利用KERAS CV库。这个用户友好的框架有助于开发自定义的WBF层,无缝集成到Yolov8架构中。该创新层通过基于置信度得分策略性地组合边界框,在完善对象检测结果中起着至关重要的作用。Python:开发基础Python是该项目的主要编程语言。其广泛的计算机视觉库生态系统为数据操作和模型开发提供了重要的工具。开发和评估过程是在配备GPU的工作站上进行的。此设置确保了有效的处理和实验。但是,该方法可以适应利用基于云的资源来用于大规模培训和部署方案。评估WBF严格评估WBF整合有效性的影响,采用了全面的评估策略。这种策略涉及利用可可公开可用数据集的组合,并可能由针对特定对象的感兴趣类别定制的自定义数据集补充。标准对象检测指标(例如平均平均精度(MAP))用于量化模型的性能。评估的关键方面涉及将WBF增强的Yolov8模型与没有WBF的基线Yolov8模型进行比较。
基于模型的增强学习(MBRL)是一种获得控制策略的样本有效技术,但不可避免的建模误差通常会导致性能恶化。MBRL中的模型通常仅用于重建动态,尤其是状态观察,而模型误差对策略的影响并未由培训目标捕获。这导致MBRL的目标目标之间的不匹配,实现良好的政策和价值学习,以及实践中采用的损失函数的目标,未来的国家预测。天真的直觉表明,价值感知的模型学习将解决这个问题,实际上,已经基于理论分析提出了针对该客观不匹配问题的第二种解决方案。但是,在实践中,它们往往不如通常使用的最大可能性(MLE)方法。在本文中,我们提出了价值梯度加权模型损失(VAGRAM),这是一种新颖的价值模型学习方法,可改善MBRL在具有挑战性的环境中的性能,例如小型模型容量和分散注意力的状态尺寸。我们分析了MLE和值感知的方法,并演示了他们如何在学习价值吸引模型时无法解释样本覆盖范围和功能近似的行为。fom,我们强调了在深度学习环境中稳定优化的其他目标。为了实现这一目标,我们利用经验值函数的梯度作为对RL算法对模型误差的敏感性的量度。我们通过表明我们的损失函数能够在Mujoco基准套件上获得高回报来验证我们的分析,同时比基于最大似然的方法更健壮。
糖尿病是一种持久的代谢疾病,这是由于血糖水平升高而导致的,这是由于体内胰岛素的不良产生或对体内胰岛素的无效利用而产生的。印度通常被标记为“世界糖尿病之都”,这是由于这种情况的广泛流行。根据国际糖尿病联合会报道,在2021年9月最新的作者最新知识最新的最新知识更新,据报道,印度约有7700万成年人受到糖尿病的影响。由于隐藏的早期症状,许多糖尿病患者无法诊断,导致治疗延迟。虽然已经利用计算智能方法来提高预测率,但这些方法的显着部分缺乏可解释性,这主要是由于它们固有的黑匣子性质。规则提取经常用于阐明机器学习算法固有的不透明性质。此外,为了解决黑匣子性质,使用了一种基于加权贝叶斯关联规则挖掘的强大规则的方法,以便提取的诊断糖尿病等疾病的提取规则可以非常透明,并且可以由临床专家易于分析,从而增强可解释性。使用UCI机器学习存储库来构建WBBN模型,证明了95.8%的性能精度。
摘要 磁共振 (MR) 成像是一种广泛使用的医学成像技术,可生成人体的详细解剖图像。MR 图像的分割在医学图像分析中起着至关重要的作用,因为它可以对各种疾病和状况进行准确的诊断、治疗计划和监测。由于缺乏足够的医学图像,实现精确的分割具有挑战性,尤其是在应用深度学习网络的情况下。这项工作的目的是研究从 T1 加权 (T1-w) 到 T2 加权 (T2-w) MR 序列的迁移学习,以最少的计算资源增强骨骼分割。利用基于激励的卷积神经网络,提出了四种迁移学习机制:无微调的迁移学习、开放微调、保守微调和混合迁移学习。此外,提出了一种使用 T2-w MR 作为基于强度的增强技术的多参数分割模型。这项研究的创新之处在于混合迁移学习方法,该方法克服了过度拟合问题,并以最少的计算时间和资源保留了两种模态的特征。使用 14 张临床 3D 脑 MR 和 CT 图像评估分割结果。结果表明,混合迁移学习在骨分割方面在性能和计算时间方面更胜一筹,DSC 为 0.5393 0.0007。虽然基于 T2-w 的增强对 T1-w MR 分割的性能没有显著影响,但它有助于改进 T2-w MR 分割并开发多序列分割模型。
本研究探讨了印度海军的新海上战略和使命、不断发展的能力以及在印度政治领导层和外交部的支持下开展的积极外交如何预示着印度海军在印度所称的“印度太平洋”地区和美国国防官员所称的“印度亚太”地区将更具合作性和积极性。印度海军的重点将放在印度洋的近邻,并受到其自称的“当务之急”的强烈推动(例如海上边界、能源贸易、保护海外印度人和印度西部的主要地理利益区)。但一个值得注意的新兴特征是印度扩大了在东亚和太平洋地区的海上影响力和参与度。东海和南海海洋问题的突出性、印度加入促进海洋合作的机制、与地区国家的双边关系改善以及美印关系的改善,为印度进一步与包括美国在内的地区和域外伙伴开展东部海洋活动创造了机会。
设计并实现了一款 4 位二进制加权电流控制 DAC,该 DAC 采用了适合生物医学应用的各种开关方法。虽然这种架构占用的数字面积和功率较小,但容易出现故障,尤其是在输入转换次数较多时。作者计算了具有各种开关的 4 位二进制电流控制 DAC 的 INL 和 DNL:NMOS、PMOS 和传输门 [9, 12]。DAC 的评估基于各种参数,如分辨率、功耗、稳定时间、动态范围、非线性误差 (INL 和 DNL)。本文重点介绍 INL 和 DNL。差分非线性(缩写 DNL)表示实际步长相对于理想步长的偏差,其中步长是相邻输入值的模拟输出差 [6, 10]。DAC 的 DNL 在数学上表示如下:
摘要:代谢网络可能是最具挑战性和最重要的生物网络之一。他们的研究提供了有关生物学途径的工作方式以及特定生物体对环境或治疗的鲁棒性的见解。在这里,我们提出了一个有针对边缘的顶点重量作为代表代谢网络的新框架的定向超图。这种基于超级图的表示捕获了代谢物和反应之间的高阶相互作用,以及反应和化学计量权重的方向性,从而保留了所有必需信息。在此框架内,我们提出了通信性和搜索信息作为指标,以量化有向超图的鲁棒性和复杂性。我们探讨了网络方向对这些度量的含义,并通过将它们应用于小型大肠杆菌核心模型来说明了一个实践示例。此外,我们比较了30种不同模型的代谢模型的鲁棒性和复杂性,并连接结构和生物学特性。我们的发现表明抗生素耐药性与高结构鲁棒性有关,而复杂性可以区分真核和原核生物。
Turner 等人的欧拉曲线变换 (ECT) 是嵌入单纯复形的完全不变量,易于进行统计分析。我们对 ECT 进行了推广,以提供同样方便的表示形式,用于加权单纯复形,例如在某些医学成像应用中自然出现的对象。我们利用 Ghrist 等人关于欧拉积分的工作来证明这个不变量——称为加权欧拉曲线变换 (WECT)——也是完整的。我们解释了如何将灰度图像中分割的感兴趣区域转换为加权单纯复形,然后转换为 WECT 表示。该 WECT 表示用于研究多形性胶质母细胞瘤脑肿瘤形状和纹理数据。我们表明,WECT 表示可根据定性形状和纹理特征有效地对肿瘤进行聚类,并且这种聚类与患者生存时间相关。