1. 揭示使用 FPGA 的设计方法。2. 深入了解故障模型。3. 了解用于故障检测的测试模式生成技术。4. 设计时序电路中的故障诊断。5. 通过案例研究了解流程设计。单元 - I 可编程逻辑器件:可编程逻辑器件的概念、SPLD、PAL 器件、PLA 器件、GAL 器件、CPLD 架构、FPGA FPGA 技术、架构、virtex CLB 和切片、FPGA 编程技术、Xilinx XC2000、XC3000、XC4000 架构、Actel ACT1、ACT2 和 ACT3 架构。 [教材-1] 第二单元 用状态图和状态表分析和推导时钟时序电路:时序奇偶校验器、信号跟踪和时序图分析-状态表和状态图-时序电路的通用模型、序列检测器的设计、更复杂的设计问题、状态图构建指南、串行数据转换、字母数字状态图符号。多时钟时序电路的需求和设计策略。[教材-2] 第三单元 时序电路设计:时序电路的设计程序-设计示例、代码转换器、迭代电路的设计、比较器的设计、控制器 (FSM) - 亚稳态、同步、FSM 问题、流水线资源共享、使用 FPGA 的时序电路设计、时序电路的仿真和测试、计算机辅助设计概述。 [教材-2] 第四单元故障建模和测试模式生成:逻辑故障模型、故障检测和冗余、故障等效性和故障定位、故障主导性、单个故障卡住模型、多个故障卡住模型、桥接故障模型。通过常规方法、路径敏感化技术、布尔差分法、KOHAVI 算法、测试算法-D 算法、随机测试、转换计数测试、签名分析和测试桥接故障对组合电路进行故障诊断。[教材-3 和参考文献 1] 第五单元时序电路中的故障诊断:电路测试方法、转换检查方法、状态识别和故障检测实验、机器识别、故障检测实验设计。[参考文献 3]
1。使用FPGA公开设计方法。2。可以深入了解故障模型。3。了解用于故障检测的测试模式生成技术。4。在连续电路中设计故障诊断。5。使用案例研究在流量的设计中提供理解。单元 - I可编程逻辑设备:可编程逻辑设备,SPLD,PAL设备,PLA设备,GAL设备,CPLD架构,FPGAS-FPGA技术,体系结构,Virtex CLB和Slice,FPGA编程技术,XC2000,XC2000,XC3000,ACT1 Act1 anderction Actient1 Actrect1,Act1 andertion。[TEXTBOOK-1] UNIT- II Analysis and derivation of clocked sequential circuits with state graphs and tables: A sequential parity checker, Analysis by signal tracing and timing charts-state tables and graphs-general models for sequential circuits, Design of a sequence detector, More Complex design problems, Guidelines for construction of state graphs, serial data conversion, Alphanumeric state graph notation.需要和设计策略,用于多盘顺序电路。[教科书2]单元-III顺序电路设计:顺序电路设计的设计步骤,示例,代码转换器,迭代循环设计,比较器的设计,控制器(FSM) - 标准,同步,FSM问题,FSM问题,使用FPGAS的序列电路共享,使用FPGAS的顺序设计,模拟和测试的序列循环设计。[Techtbook-3&Ref.1][教科书2]单元 - IV故障建模和测试模式生成:逻辑故障模型,故障检测和冗余,故障等效性和故障位置,故障优势,单个卡在故障模型,多个卡在故障模型上,桥接故障模型。通过常规方法,路径敏化技术,布尔差异方法,Kohavi算法,测试算法-D算法,随机测试,过渡计数测试,签名分析和测试桥梁的断层对组合回路的故障诊断。
1。使用FPGA公开设计方法。2。可以深入了解故障模型。3。了解用于故障检测的测试模式生成技术。4。在连续电路中设计故障诊断。5。使用案例研究在流量的设计中提供理解。单元I可编程逻辑设备:可编程逻辑设备,SPLD,PAL设备,PLA设备,GAL设备,CPLD-Archittuction,FPGAS-FPGA技术,体系结构,Virtex CLB和Slice,FPGA编程技术,XC2000,XC2000,XC3000,Act 3 Actient Act1 anderct1 anderct1 anderct1 anderct1 anderct1 anderct1[TEXTBOOK-1] UNIT-II Analysis and derivation of clocked sequential circuits with state graphs and tables: A sequential parity checker, Analysis by signal tracing and timing charts-state tables and graphs-general models for sequential circuits, Design of a sequence detector, More Complex design problems, Guidelines for construction of state graphs, serial data conversion, Alphanumeric state graph notation.需要和设计多锁顺序电路的策略。[TEXTBOOK-2] UNIT-III Sequential circuit Design: Design procedure for sequential circuits-design example, Code converter, Design of Iterative circuits, Design of a comparator, Controller (FSM) – Metastability, Synchronozation, FSM Issues, Pipelining resources sharing, Sequential circuit design using FPGAs, Simulation and testing of Sequential circuits, Overview of computer Aided Design.[Ref.3][教科书2]单元IV故障建模和测试模式生成:逻辑故障模型,故障检测和冗余,故障等效性和故障位置,故障优势,单个卡在故障模型,多个卡在故障模型上,桥接故障模型。通过常规方法,路径敏化技术,布尔差异方法,Kohavi算法,测试算法-D算法,随机测试,过渡计数测试,签名分析和测试桥梁的断层对组合回路的故障诊断。[教科书-3&Ref.1]单元 - 顺序电路中的v故障诊断:电路测试方法,过渡检查方法,状态识别和故障检测实验,机器识别,故障检测实验的设计。
2019 公司 2018 2019 变化 2019 公司 2018 2019 变化 1 英特尔* 66,290 67,754 2.2% 26 Marvell Technology Group* 2,800 2,655 (5.2%) 2 三星电子 73,708 52,191 (29.2%) 27 东芝* 5,614 2,435 (56.6%) 3 SK 海力士 36,240 22,297 (38.5%) 28 罗伯特·博世* 2,494 2,430 (2.6%) 4 美光科技 29,742 20,254 (31.9%) 29 Qorvo 2,334 2,358 1.0% 5 博通* 16,261 15,322 (5.8%) 30 美信集成* 2,497 2,183 (12.6%) 6 高通* 15,375 13,613 (11.5%) 31 赛普拉斯半导体* 2,439 2,145 (12.1%) 7 德州仪器 14,592 13,364 (8.4%) 32 联咏* 1,815 2,081 14.7% 8 意法半导体* 9,579 9,451 (1.3%) 33 瑞昱半导体* 1,516 1,962 29.4% 9 恩智浦* 9,022 8,758 (2.9%) 34 日亚化 1,842 1,794 (2.6%) 10 苹果 7,646 8,569 12.1% 35 南亚科技 2,808 1,667 (40.6%) 11 索尼 6,465 8,536 32.0% 36 欧司朗 1,970 1,635 (17.0%) 12 英飞凌科技* 8,748 8,471 (3.2%) 37 Nexperia 1,496 1,466 (2.0%) 13 联发科* 7,890 7,959 0.9% 38 Dialog Semiconductor* 1,442 1,408 (2.4%) 14 Kioxia 8,533 7,827 (8.3%) 39 三菱 1,310 1,352 3.2% 15 海思科技* 6,035 7,738 28.2% 40 MLS 1,198 1,318 10.0% 16 Nvidia* 8,073 7,331(9.2%) 41 Vishay 1,551 1,289(16.9%) 17 瑞萨电子* 6,710 6,716 0.1% 42 Sanken 1,333 1,265(5.1%) 18 AMD 6,295 6,591 4.7% 43 Cirrus Logic* 1,248 1,242(0.5%) 19 西部数据 9,078 6,252(31.1%) 44 华邦电子* 1,352 1,237(8.5%) 20 ADI 公司 6,207 5,831 (6.1%) 45 Denso 1123 1,193 6.2% 21 ON Semiconductor* 5,642 5,327 (5.6%) 46 Synaptics* 1,437 1,165 (18.9%) 22 Microchip Technology* 5,154 5,161 0.1% 47 Macronix International* 1143 1,061 (7.2%) 23 Xilinx* 2,904 3,235 11.4% 48 UniSoC Technologies 1,286 1,036 (19.4%) 24 Skyworks Solutions* 3,277 2,822 (13.9%) 49 Diodes 1033 1,021 (1.2%) 25 Rohm* 3,025 2,768 (8.5%) 50 索喜科技 996 1008 1.2%
摘要 高密度互连 (HDI) 印刷电路板 (PCB) 和相关组件对于使太空项目受益于现代集成电路(如现场可编程门阵列 (FPGA)、数字信号处理器 (DSP) 和应用处理器)日益增加的复杂性和功能性至关重要。对功能的不断增长的需求转化为更高的信号速度和越来越多的 I/O。为了限制整体封装尺寸,组件的接触焊盘间距会减小。大量 I/O 与减小的间距相结合对 PCB 提出了额外的要求,需要使用激光钻孔微孔、高纵横比核心通孔和小轨道宽度和间距。虽然相关的先进制造工艺已广泛应用于商业、汽车、医疗和军事应用;但将这些能力的进步与太空的可靠性要求相协调仍然是一个挑战。考虑了两类 HDI 技术:两级交错微孔(基本 HDI)和(最多)三级堆叠微孔(复杂 HDI)。本文介绍了按照 ECSS-Q-ST-70-60C 对基本 HDI 技术的鉴定。在 1.0 mm 间距时,该技术成功通过了所有测试。在 0.8 mm 间距时,在互连应力测试 (IST) 和导电阳极丝 (CAF) 测试中会遇到故障。这些故障为更新 HDI PCB 的设计规则提供了基础。简介通常认为 HDI PCB 有两个主要驱动因素:(1) 关键元件的小间距和高 I/O 数量;(2) 这些元件的性能不断提高,导致电路板上的信号线速度加快。微孔的使用可以缩短信号路径的长度,从而提高信号完整性和电源完整性。由于扇出内的密集布线,关键网络可能会受到串扰。在 1.0 mm 间距元件的引脚之间布线差分对需要精细的线宽和间距。0.8 mm 间距元件的埋孔之间不再可能进行差分对布线。需要在扇出区域内分割线对,分割长度决定了分割对对信号完整性的影响。单端网络宽度的变化以及差分对间距和/或走线宽度的变化将导致阻抗不连续。因此,选择合适的层结构和过孔类型将同时改善布线能力和信号完整性。在定义 HDI PCB 技术参数时,一个重要的考虑因素是元件间距和 I/O 数量不能独立处理。间距为 1.0 mm 的高引脚数元件(> 1000 引脚)可能需要使用微过孔来减少总层数或改善受控阻抗线的屏蔽。另一方面,仅具有两排焊球的 0.5 mm 间距元件的逃逸布线可在不使用微孔和细线宽和间距的情况下进行。增加层数以便能够布线一个或多个高引脚数元件将导致 PCB 厚度增加,这会通过限制通孔纵横比影响最小通孔钻孔直径,从而再次限制布线可能性。为了定义 HDI 技术参数,需要了解过去、现在和未来太空项目中使用的面阵器件 (AAD) 的规格。纵观目前正在开发的复杂太空元件,间距为 1.0 mm 的陶瓷柱栅阵列 (CCGA) 仍将是未来几年的首选封装。例如,新的 Xilinx FPGA (RT-ZU19EG: CCGA1752) [1]、CNES VT65 电信 ASIC (CCGA1752) [2] 和欧洲航天局 (ESA) 的下一代微处理器 (NGMP, CCGA625) [3] 就是这种情况。间距较小的柱状网格阵列 (0.8 毫米) 已在研发中得到展示 [4],尽管尚未发现商业实现。带有非塌陷高铅焊球的陶瓷球栅阵列 (CBGA) 用于军事和航空航天应用 [5]。当间距为 0.8 毫米及以上 (0.5 毫米) 时,陶瓷 (即密封) 封装会成为可靠性风险,因为更小的间距 (0.8 毫米) 会降低封装的可靠性。