摘要 — 水下航行器最近在生态监测中变得越来越有用,这在很大程度上要归功于现代计算机所具备的先进处理能力。大多数水下航行器都是鱼雷形的,并且是非完整控制的,这使它们效率高,但缺乏精确的机动性。当需要更精确的导航时,会使用一些立方体形状的航行器;但是,由于航行器具有很大的阻力,因此它们无法利用滑行运动和流体动力升力。Stingray 自主水下航行器 (AUV) 是一款紧凑、轻便的 AUV,具有独特的设计实现。Stingray 的船体是一个碳纤维外壳,其仿生设计让人想起了它生活在海洋中的名字。这种流线型轮廓可提供非常低的阻力,并允许航行器在水中滑行。Stingray 还采用了独特的推进系统,将机翼和尾部上的三个垂直推进器与安装在下方的两个 Voith-Schneider 螺旋桨相结合,用于实现滚转和俯仰。此外,这两个螺旋桨还提供了扫射能力,使飞行器能够以六个自由度移动。这使得 Stingray 能够轻松地以低速操纵并以类似于直升机的方式悬停,同时还能够利用机翼产生的升力像固定翼飞机一样滑翔。
5.6 带控制器的环路形状对象................................................................................. 81 5.7 环路增益奇异值图............................................................................................... 82 5.8 湍流模型仿真................................................................................................ 83 5.9 随机速度扰动矢量................................................................................................. 84 5.10 对单位倾斜角阶跃命令的闭环横向状态响应......................................................................... 86 5.11 对单位倾斜角阶跃命令的闭环纵向状态响应......................................................................................... 87 5.12 对单位倾斜角阶跃需求的控制历史............................................................................. 88 5.13 对单位俯仰角阶跃命令的闭环纵向状态响应......................................................................................... 89 5.14 对单位俯仰角阶跃命令的闭环横向状态响应......................................................................................... 90 5.15 对单位俯仰角阶跃需求的控制历史............................................................................. 91 5.16 控制器结构................................................................................
Xsens 的 MTi 产品组合目前有 7 个系列成员,功能范围从惯性测量单元 (IMU) 到完全集成的 GPS/INS 解决方案。所有产品都包含 3D 惯性传感器组件(ISA:陀螺仪和加速度计)和 3D 磁力计,可选配气压计和 GNSS 接收器。MTi 产品系列分为两个系列,即 MTi 10 系列和 MTi 100 系列。MTi 10 系列是 Xsens 的入门级型号,具有强大的精度和有限的 IO 选项范围。100 系列是革命性的新型 MEMS IMU、方向和位置传感器模块,提供前所未有的精度和广泛的 IO 接口。所有 MTi 都具有强大的多处理器核心设计,能够以极低的延迟处理滚动、俯仰和偏航,以及输出校准的 3D 线性加速度、转速(陀螺仪)、(地球)磁场和大气压力(仅限 100 系列)数据。MTi-G-700 GPS/INS 还提供 3D 位置和 3D 速度。MTi 接口可直接提供 50 多种不同的输出格式。每种产品的各种输出可在第 4.1 节中找到。本文档描述了所有 7 个 MTi 的使用、基本通信接口和规格。它们的不同之处已明确指出。从机械和软件接口的角度来看,所有产品都设计为可互换。
摘要 - 本文提出了一种新型的地形自适应局部轨迹规划师,旨在在可变形地形上自动操作。最先进的解决方案要么不考虑可变形的地形,要么不提供足够的鲁棒性或计算速度。为了弥合此搜索差距,本文引入了一种新型的模型预测控制(MPC)公式。与仅依赖于避免障碍物的硬性或软限制的普遍的最新方法相反,目前的配方通过纳入两种类型的约束来增强鲁棒性。通过广泛的仿真来评估配方的有效性和鲁棒性,涵盖了广泛的随机场景,并与最新方法进行了比较。随后,通过文献中以最佳控制的地形力学模型来增强该配方,并明确解决了地形变形。此外,采用无知的卡尔曼过滤器的地形估计器可用于在线动态调整下沉指数,从而产生地形自适应配方。在现实世界中,该公式在现实世界的实验中进行了测试,以刚性验证的配方作为基准测试。结果展示了拟议的配方所实现的优越的安全性和绩效,强调了将Terramogenics知识整合到计划过程中的重要意义。具体而言,所提出的地形自适应配方可实现平均绝对侧滑角,平均绝对偏航率降低,目标时间较短以及更高的成功率,这主要归因于其对计划者内部机械学的增强的理解。
本研究是在 SBIR 第二阶段研究计划下进行的。FAA William J. Hughes 技术中心技术监控员是 Thomas DeFiore 先生。16.摘要 本研究和开发计划的目的是制造一种小型、轻便、低成本的记录器,用于通用航空和通勤型飞机的负载使用情况监控,以支持联邦航空管理局 (FAA) 运营负载监控计划。所执行的活动范围包括:(1) 设计、开发、制造和测试低成本机身累积疲劳系统 (ACFS),(2) 将 ACFS 安装到 Embry-Riddle 航空大学拥有和运营的七架 Cessna 172 飞机机队中,(3) 在七架 Cessna 172 飞机上进行飞机使用数据采集,(4) 定义 ACFS 在数据采集工作中的有效性以及 ACFS 所需的任何设计变更,以及 (5) 以 FAA 有用的格式提供数据采集工作产生的处理数据。本报告介绍了 ACFS 的描述、从 1000 次飞行收集的数据的分析和统计摘要,这些飞行代表了 1168 小时的 Cessna 172 飞机运行数据。数据采集工作的最终产品包括加速度、速度、高度以及飞行时间和距离的统计信息。17.关键词 载荷、法向加速度、空速、高度、俯仰、滚转和偏航速度、塞斯纳 172 飞机
性能更新率 (Hz) 25 或 100 请参阅订购信息完整准确度数据 (秒) < 90 航向范围 (°) 0 至 360 准确度 (°) ± 2 FAA TSO C6d 测试条件分辨率 (°) 0.1 姿态滚转范围 (°) ± 180 俯仰范围 (°) ± 90 准确度 (°) ± 2.5 FAA TSO C4c 测试条件垂直度 (°) < 1.0 分辨率 (°) 0.1 环境 1 FAA DO-160D 测试条件工作温度 (°C) -40 至 +70 非工作温度 (°C) -55 至 +85 工作振动 (g rms) DO-160D,第 8 部分 S 类,曲线 M; U 类 EMI DO-160D,第 20 节 W 类 DO-160D,第 21 节 M 类 防水/防潮密封外壳 海拔 (ft) 35,000 最大角速率 ( °/秒) 200 滚动、俯仰或偏航 最大加速度范围 (G) 10 电气输入电源电压 (VDC) 12V 或 24V 电气。系统 DO-160D 第 16 节,类别。B 输入功率 (W) < 4 @ 12 VDC 数字输出格式 RS-232 物理尺寸 (英寸) 4.66 x 4.53 x 4.863 不包括安装法兰 (厘米) 11.84 x 11.51 x 12.35 不包括安装法兰 重量 (磅) 3.5 (千克) 1.6 连接器 15 针 Sub-Min DB 公头
本研究属于 SBIR 第二阶段研究计划。FAA William J. Hughes 技术中心技术监督员是 Thomas DeFiore 先生。16. 摘要 本研究和开发计划的目的是制造一种小型、轻便、低成本的记录器,用于通用航空和通勤型飞机的负载使用情况监控,以支持联邦航空管理局 (FAA) 运营负载监控计划。所执行的活动范围涉及以下内容:(1) 设计、开发、制造和测试低成本机身累积疲劳系统 (ACFS),(2) 将 ACFS 安装到 Embry-Riddle 航空大学拥有和运营的七架 Cessna 172 飞机机队中,(3) 在七架 Cessna 172 飞机上进行飞机使用数据采集,(4) 确定 ACFS 在数据采集工作中的有效性以及 ACFS 所需的任何设计变更,以及 (5) 以 FAA 有用的格式提供数据采集工作产生的处理数据。本报告介绍了 ACFS 的描述、从 1000 次飞行收集的数据的分析和统计摘要,这些数据代表了 1168 小时的 Cessna 172 飞机运行数据。数据采集工作的最终产品包括加速度、速度、高度以及飞行时间和距离的统计信息。17. 关键词 载荷、法向加速度、空速、高度、俯仰、滚转和偏航率、Cessna 172 飞机
在兰利 14 英尺乘 22 英尺亚音速风洞中测试了一个 1/8 比例的翼内风扇概念模型。这一概念是格鲁曼航空航天公司(现为诺斯罗普格鲁曼公司)考虑为美国陆军开发的设计(定为 755 型)。悬停测试在隧道附近的模型准备区进行。随着风扇推力的变化,距压力仪表地平面的高度、俯仰角和滚转角都会发生变化。在风洞中,随着风扇推力的变化,攻角和侧滑角、距风洞地板的高度和风速都会发生变化。在模型准备区和风洞中,针对几种配置测量了模型上的空气载荷和表面压力。主要的配置变化是改变安装在风扇出口以产生推进力的叶片角度。在悬停测试中,随着模型离地面高度的降低,推力消除法向力在风扇转速恒定的情况下发生了显著变化。最大的变化通常是高度与风扇出口直径之比小于 2.5。通过使用叶片将风扇出口气流偏向外侧,可以显著减少这种变化。在风洞中,对许多叶片角度配置进行了滚转、偏航和升力控制测试。还评估了襟翼偏转和尾翼入射角等其他配置特征。尽管 V 型尾翼增加了静态纵向 s
Xsens 的 MTi 产品组合目前有 7 个系列产品,功能范围从惯性测量单元 (IMU) 到完全集成的 GPS/INS 解决方案。所有产品都包含 3D 惯性传感器组件(ISA:陀螺仪和加速度计)和 3D 磁力计,并可选配气压计和 GNSS 接收器。MTi 产品系列分为两个系列,即 MTi 10 系列和 MTi 100 系列。MTi 10 系列是 Xsens 的入门级型号,具有强大的精度和有限的 IO 选项范围。100 系列是革命性的新型 MEMS IMU、方向和位置传感器模块,提供前所未有的精度和广泛的 IO 接口。所有 MTi 均采用强大的多处理器核心设计,能够以极低的延迟处理滚动、俯仰和偏航,以及输出经过校准的 3D 线性加速度、转速(陀螺仪)、(地球)磁场和大气压力(仅限 100 系列)数据。MTi-G-700 GPS/INS 还提供 3D 位置和 3D 速度。MTi 接口可直接提供 50 多种不同的输出格式。每种产品的各种输出可在第 4.1 节中找到。本文档介绍了所有 7 种 MTi 的使用、基本通信接口和规格。它们之间的差异已明确标明。从机械和软件接口的角度来看,所有产品都设计为可互换。
1. 事实信息.................... ... ................. ... ................. ... ................. ... ....................................................................................................................................................................................................................................................... 6 1.5.4 空中交通管制人员 ....................................................................................................................................................................................................................................... 7 1.6 飞机信息 ....................................................................................................................................................................................................................................................... 7 1.6 飞机信息 ....................................................................................................................................................................................................................................................................... 7 ................................................................................................................................................................. 7 1.6.1 一般....................................................................................................................................................................