我们研究电压偏置的单渠道连接处的电荷传输,涉及有限的库珀对动量的螺旋超导体。对于约瑟夫森结,平衡电流相关的关系显示出超级传导二极管效应:临界电流取决于传播方向。我们为电压偏置的约瑟夫森二极管制定了一种散射理论,并表明多个安德烈的反射过程在DC电流 - 电压曲线中导致在低温和小电压下,由于光谱间隙的多普勒移位而导致的小电压。在当前偏向的情况下,二极管效率具有最大的矩效率η0≈0。4对于此模型。在电压偏置的情况下,拟合效率可以达到理想值η=1。我们还讨论了正常金属和螺旋超导体之间正常驾驶连接的电荷传输,并对具有自旋轨道相互作用和磁性Zeeman Fileds的相关模型发表评论。
发现2D材料的发现为设计具有指定属性的新材料开辟了前所未有的机会。在许多情况下,设计指导原理基于一种或另一种接近性效应,即电子相关性从一种材料到另一种材料的纳米级 - 渗透。在几层范德华(VDW)异质结构中,接近区域占据了整个系统。在这里,我们证明了2D超导体/铁磁体VDW异质结构的磁性和超导接近效应的物理学是由两种材料电子光谱的界面杂交的影响确定的。可以通过门控调整杂交程度,这使得能够实现高度可控性的接近效应。,我们表明,这允许在此类结构中进行超导性电气切换,以及控制超导光谱的Zeeman分裂的振幅和迹象,为Spintronics和Spin Caloritronics打开了有趣的机会。
摘要:二维(2D)杂交有机 - 无机渗透性滑石(HOIP)具有增强的稳定性,高可调性和强型自旋 - 轨道耦合,在广泛的应用中显示出很大的潜力。在这里,我们将2D HOIP的已经丰富的功能扩展到了一个新的领域,实现了拓扑超导性和主要量子计算模式。Especially, we predict that room- temperature ferroelectric BA 2 PbCl 4 (BA for benzylammonium) exhibits topological nodal-point superconductivity (NSC) and gapless Majorana modes on selected edges and ferroelectric domain walls when proximity- coupled to an s-wave superconductor and an in-plane Zeeman field, attractive for experimental verification and application.由于NSC受2D HOIP的空间对称性保护,因此我们设想在此类材料中可以找到更多外来的拓扑超导状态,因为它们的多种非中性空间组可能会在HOIPS和拓扑超导率的田间开设新的途径。关键字:二维,铁电混合钙蛋白,拓扑结节点超导性,边缘/域 - 墙壁Majoragara模式
该提案描述了基于爱因斯坦De-Haas实验的布置。外部施加的磁场通过将微波功率频率降低到铁氧体芯周围的线圈,从而磁化了铁氧体芯。铁磁共振。核心在铁磁共振时达到负渗透性。由于负渗透性,铁氧体应对施加到铁氧体芯一端的DC电场引起的磁性。在某些情况下,负渗透性可能导致磁场的驱逐,导致B等于材料内部的B。这种诱发的现象与在超导体中观察到的Meissner效应有些类似。在负渗透性的情况下,负磁反应有效地将材料的内部屏蔽到外部磁场上。磁场的卷曲为零,导致移动电荷载体上等于零的净力。
我们报告了一种光晶格钟,其总系统不确定度为 8.1×10-19(以分数频率单位表示),是迄今为止所有时钟中最低的不确定度。该时钟依赖于询问垂直取向的浅一维光晶格中捕获的稀疏费米子锶原子集合中的超窄 1 S 0 → 3 P 0 跃迁。利用成像光谱,我们之前展示了创纪录的原子相干时间和测量精度,这是通过精确控制碰撞位移和晶格光位移实现的。在这项工作中,我们通过评估 5 s 4 d 3 D 1 寿命来修改黑体辐射位移校正,这需要精确表征和控制 5 s 4 d 3 D 1 衰变中的多体效应。最后,我们测量了磁敏感度最低的时钟跃迁上的二阶塞曼系数。所有其他系统效应的不确定性均低于 1 × 10 − 19。
使用多级信息载体(也称为量子比特)是探索量子计算设备可扩展性的一条有前途的途径。在这里,我们介绍了一种量子处理器寄存器的原理验证实现,该寄存器使用线性阱中的光寻址 171 Yb + 离子量子比特。171 Yb + 离子的丰富能级结构允许使用 435.5 nm 四极时钟跃迁的塞曼子能级进行高效且稳健的量子比特编码。我们展示了由单量子比特旋转和双量子比特 Mølmer-Sørensen 操作组成的通用门集的实现,该操作使用双量子系统,形式上等同于基于通用门的四量子比特处理器。我们的研究结果为进一步研究使用基于捕获离子的处理器更有效地实现量子算法铺平了道路,特别是探索 171 Yb + 离子量子比特的性质。
我们研究了通过正常超导体 (NS) 结的传输,该结由具有螺旋边缘态的量子自旋霍尔 (QSH) 系统和具有手性马约拉纳边缘模式的二维 (2D) 手性拓扑超导体 (TSC) 制成。我们采用二维扩展四带模型,用于磁场 (塞曼) 中受 s 波超导影响的 HgTe 基量子阱。我们使用 Bogoliubov-de Gennes 散射形式表明,该结构提供了 2D TSC 的显著传输信号。作为样品宽度 (或费米能量) 的函数,电导共振经历 2 e 2 / h (非平凡相) 和 4 e 2 / h 平台期 (平凡相) 的序列,随着样品宽度变大,它们落入非零陈数 (2D 极限) 的区域内。这些特征是 QSH 效应和 TSC 拓扑性质的体现。
本文提出了新兴现代信息技术作为理解量子物理,特别是微观宇宙规律的最简单手段的概念。分析表明,计算机辅助建模结合了实验所需的所有基本教学特征,从而提高了培训的有效性。关键词:信息技术、量子物理、建模。引言、文献综述、方法众所周知,使用现代信息技术是实验课的最佳工具,它为提高培训课程的有效性提供了广阔的机会[1]。基于这种方法,信息技术成为理解量子物理,特别是微观宇宙规律的最简单手段。这个机会将使学生更容易理解量子物理的基本原理,并创造一个有利的环境来展示这一理论的实际意义。使用信息技术或基于计算机的模型可以将物理实验与自然过程结合起来。因此,建模与传统方法的不同之处在于展示了有效的实验[2]。基于计算机的建模结合了实验所需的所有基本教学特征,从而提高了培训的有效性。例如,我们可以在量子物理学中使用计算机建模来研究光电效应。由于学生通常进行两个实验室,一个在实验设备上工作,另一个在计算机模型上工作。然后比较和讨论在实验室工作答辩中获得的结果。此外,致力于研究发射光谱(锌、汞、钠)精细结构的实验室研究可以通过计算机模型来补充,以研究塞曼效应。塞曼效应的大型实验室设置涉及许多复杂且昂贵的工具。例如,在测量黄色钠双线态后,学生可以在计算机模型上对其进行研究。这种实验和计算机实验的结合理想地相互补充。请注意,这些实验室设备是非常罕见的设备。我们研究了为教育机构的自然和数学专业建模现代化量子物理实验室的基础知识。研究的结果是,我们得出结论,需要某些要求才能实现实验的高效率 [1]。此外,计算机建模(软件)还应满足通用性、充分性、准确性、效率性的要求[2]。
量子信息处理需要能够相干且精确地控制和测量的量子比特 [1]。被电磁场捕获并保存在真空室中的原子离子线性链可以满足这些要求,并且已经成为一个令人兴奋且有前途的量子计算平台 [2-4]。量子比特可以在超精细基态或塞曼基态中编码,其中离子通过 Mølmer-Sørensen 方案受到自旋相关力 [5]。然后,虚拟声子在库仑力的作用下介导离子之间的自旋-自旋相互作用 [6]。这样,离子阱链成为自旋-自旋相互作用系统的量子模拟的天然平台 [7]。大量的研究兴趣集中在为量子模拟设计特定的哈密顿量 [8-12]。尤其独特的是 XY 自旋模型,它们的长程相互作用以 1 / r α 衰减,其中 α 是一个可调参数。该模型存在模型空间外的相干泄漏,特别是对于较小的 α 。在这里,我们展示了如何完全缓解这种相干误差,并提供了两个应用:最佳空间量子搜索和 O ( √
1 剑桥大学应用数学与理论物理系,剑桥,英国;2 牛津大学李嘉诚健康信息与发现中心大数据研究所,牛津,英国;3 全球卫生工作组被忽视的热带病支持中心,美国佐治亚州迪凯特;4 伦敦卫生与热带医学院传染病数学建模中心和全球卫生与发展系,伦敦,英国;5 格拉斯哥大学生物多样性、同一健康与兽医学学院,格拉斯哥,英国;6 华威大学数学研究所和塞曼系统生物学与传染病流行病学研究所,考文垂,英国;7 利物浦热带医学院媒介生物学系,利物浦,英国;8 世界卫生组织被忽视的热带病控制部,瑞士日内瓦; 9 英国牛津大学纳菲尔德人口健康系卫生经济研究中心