赵海洋、罗可欣、刘梅寒、赵永胜、张红攀。除了现有的附属机构外,他们还应该有中国四川省南充市川北医学院附属医院。更正后的单位如下: 赵海洋 1,2,3,4,† ,罗可欣 1,2,3,4,† ,刘梅涵 1,2,4,5,† ,蔡元泽 2 ,刘思曼 2 ,李诗娟 6 ,赵永胜 1,2,3,*,张红攀 1,2,5,7,* 1.川北医学院附属医院,四川省南充市 2.川北医学院附属医院胸外科,四川省南充市 5.川北医学院附属医院肿瘤科,四川省南充市 6.南充市中心医院,四川省南充市 7.四川省治疗性蛋白质重点实验室,四川省南充市原文已更新。
腺样囊性癌 (ACC) 是一种罕见的分泌腺恶性肿瘤,具有双重生物学和临床行为。虽然大多数患者最初表现为局部晚期疾病,但 50-60% 的病例会出现远处转移,而这种疾病的治疗选择有限 [1]。我们的团队之前曾根据蛋白质组学和临床数据报告过两种主要的 ACC 分子亚型 [2]。ACC-I 是最具侵袭性的 ACC 类型,其特征是实体组织学、NOTCH1 突变富集、早期发生转移(包括转移到内脏器官)和预后不良(中位总生存期 (mOS) = 3.4 年)。而 ACC-II 更为普遍(占病例的 66%),其特征是非实体组织学(筛状和/或管状)、p63 和受体酪氨酸激酶上调、主要发生肺转移和总体缓慢病程(mOS = 23 年)。这些差异强调了 ACC 的内在异质性以及个性化治疗的必要性,以改善该疾病患者的临床结果。
。CC-BY 4.0 国际许可证永久有效。它以预印本形式提供(未经同行评审认证),作者/资助者已授予 bioRxiv 许可,可以在该版本中显示预印本。版权所有者于 2024 年 12 月 13 日发布了此版本。;https://doi.org/10.1101/2024.12.10.627690 doi:bioRxiv 预印本
目的:三磷酸腺苷敏感钾通道开放剂二氮氧化物可模拟缺血性预处理并具有心脏保护作用。明确二氮氧化物的作用位点和作用机制可为接受心脏手术的患者提供有针对性的药物治疗。几种线粒体候选蛋白已被研究作为潜在的三磷酸腺苷敏感钾通道成分。肾外髓质钾 (Kir1.1) 和磺酰脲类敏感调节亚基 1 被认为是线粒体三磷酸腺苷敏感钾通道的亚基。我们假设,在伴有心脏停搏液的全身缺血模型中,药物阻断或基因缺失 (敲除) 肾外髓质钾和敏感调节亚基 1 将导致二氮氧化物失去心脏保护作用。
抽象背景肺腺癌(LUAD)是一种高度异质性疾病,对准确的预后预测构成了重大挑战。线粒体在真核细胞的能量代谢中起着核心作用,并可能影响程序性细胞死亡(PCD)机制,这对于肿瘤发生和癌症的进展至关重要。然而,线粒体功能与pCD之间相互作用的预后意义需要进一步研究。方法我们使用机器学习分析了来自七个全球队列中1231名LUAD患者的数据,以开发与线粒体相关的PCD签名(MPCD)。使用六种免疫疗法队列(LUAD,黑色素瘤,透明细胞肾细胞癌; n = 935)和21种肿瘤类型的PAN-CACTER队列进行验证。内部luad组织队列(n = 100)证实了核苷双磷酸激酶4(NME4)的预后意义。体内和体外实验探索了NME4在免疫排除中的作用。结果,MPCD在LUAD患者的预后表现出强烈的预测性能,超过了先前发表的LUAD特征的114个。此外,MPCD有效地预测了免疫疗法患者的结局(包括患有LUAD,黑色素瘤和透明细胞肾细胞癌的患者)。从生物学上讲,MPCD与免疫特征显着相关,高MPCD组表现出降低的免疫活性和冷肿瘤的趋势。nMe4是MPCD中的一个关键基因(相关= 0.55,p <0.05),与高表达的LUAD患者的预后较差有关,特别是在CD8沙漠表型中,通过我们的内部同学验证。多重免疫荧光证实了NME4与免疫细胞(例如CD3+ T细胞和CD20+ B细胞)之间的空间共定位和排除关系。进一步的实验表明,NME4在体外和体内调节了LUAD细胞的增殖和侵袭。重要的是,抑制NME4增加了CD8+ T细胞的丰度和活性,并增强了体内抗编程细胞死亡蛋白-1疗法的抗肿瘤免疫力。结论MPCD为个别LUAD患者提供个性化的风险评估和免疫疗法干预措施。nme4是MPCD中的关键基因,已被确定为一种新型癌基因
为携带特定基因异常的肺腺癌患者带来了显著的获益,携带表皮生长因子受体(EGFR)突变和间变性淋巴瘤激酶(ALK)融合/重排患者的死亡率明显下降(5-6)。针对EGFR突变的靶向药物如表皮生长因子受体酪氨酸激酶抑制剂(EGFR-TKI)已投入临床,部分患者由于T790M等EGFR耐药突变或其他EGFR下游通路激活而在1-2年内产生耐药(7-8)。此外,其他基因突变可能作为肺腺癌的潜在治疗靶点或重要的预后指标(9)。因此,全面、准确地分析肺腺癌的基因突变谱对指导临床治疗选择和预后评估具有重要意义。
结果:我们对 80 名患者进行了最终分析,中位年龄为 65 岁,其中 88% 的东部肿瘤协作组体能状态评分在 0 至 2 之间。组织病理学显示 91% 的病例为腺癌。51.3% 的患者为 III-IV 级疾病,67.5% 的格里森评分 >8。41 名患者(51.25%)接受了双侧睾丸切除术,促性腺激素释放激素类似物使用时间中位数为 32 个月。大多数患者(72.5%)对去势敏感。在 80 名患者中,60 名(75%)接受了阿比特龙治疗,20 名(25%)接受了恩杂鲁胺治疗。阿比特龙组 80% 的前列腺特异性抗原 (PSA) 倍增时间 >6 个月,恩杂鲁胺组 75% 的前列腺特异性抗原 (PSA) 倍增时间 >6 个月。两种药物的 PSA 反应率相似,疾病进展、部分反应、疾病稳定和完全反应的发生率相当(p = 0.036)。中位进展时间无显著差异(阿比特龙 19 个月,恩杂鲁胺 18 个月)(95% CI 9.7–27.9;p = 0.004)。整个队列的中位 OS 为 67 个月(95% CI 39–94;p = 0.003)。
腺样囊性癌(ACC)是一种罕见的,通常增长且侵略性的头部和颈部恶性肿瘤。尽管具有临床意义,但我们对ACC中细胞进化和微环境的理解仍然有限。我们使用16S rRNA基因测序研究了50个ACC肿瘤组织和33个相邻正常组织的肿瘤内微生物组。这使我们能够表征ACC内的细菌群落,并探索细菌群落结构,患者临床特征和通过RNA测序获得的肿瘤分子特征之间的潜在关联。ACC中的细菌组成与相邻的正常唾液组织中的细菌组成显着不同,并且ACC表现出各种水平的物种丰富度。我们确定了ACC中的两个主要微生物亚型:口服样和肠状。口服样微生物组,其特征在于奈瑟氏菌,瘦素,放线症,链球菌,Rothia和Veillonella的多样性和丰度(通常在健康的口腔中发现)与不太积极的ACC-II分子亚型和改善的患者相关。值得注意的是,我们在口腔癌以及头颈部鳞状细胞癌中鉴定了相同的口腔属。在两种癌症中,它们都是与更多样化的微生物组,侵略性较低的肿瘤表型相关的共享口腔群落的一部分,并且可以更好地生存,这些生存率揭示了属属作为ACC和其他头部和颈部癌症中有利微生物的潜在Pancancer生物标志物。相反,肠状肿瘤内微生物组具有低多样性和肠道粘液层降解物种的殖民化,例如菌属,Akkermansia,blautia,blautia,bifidobacterium和entococcus与较差的局面相关联。较高水平的细菌型thetaiotaomicron与生存率明显较差,并且与基于聚糖基基细胞膜成分的肿瘤细胞生物合成呈正相关。
Logan Thrasher Collins,1,2 Wandy Beatty,3 Buhle Moyo,4 Michele Alves-Bezerra,5 Ayrea Hurley,5 William Lagor,6 Gang Bao,4 Zhi Hong Lu,2 David T. Curiel 2,* 1 圣路易斯华盛顿大学生物医学工程系;2 圣路易斯华盛顿大学放射肿瘤学系;3 圣路易斯华盛顿大学分子微生物学系;4 莱斯大学生物工程系;5 贝勒医学院分子生理学和生物物理学系;6 贝勒医学院综合生理学系,* 通讯作者。摘要:腺相关病毒 (AAV) 作为基因治疗的递送系统取得了巨大成功,但 AAV 仅有 4.7 kb 的包装容量严重限制了其应用范围。此外,通常需要高剂量的 AAV 来促进治疗效果,从而导致急性毒性问题。虽然已经开发了双重和三重 AAV 方法来缓解包装容量问题,但这些方法需要更高的剂量才能确保以足够的频率发生共感染。为了应对这些挑战,我们在此描述了一种由共价连接到多个腺相关病毒 (AAV) 衣壳的腺病毒 (Ad) 组成的新型递送系统,这是一种以较少的 AAV 总量更有效地共感染细胞的新方法。我们利用 DogTag-DogCatcher (DgT-DgC) 分子胶系统构建我们的 AdAAV,并证明这些混合病毒复合物可实现培养细胞的增强共转导。该技术最终可能会通过提供双重或三重 AAV 的替代方案来扩大 AAV 基因递送的实用性,该替代方案可以在较低剂量下使用,同时达到更高的共转导效率。简介尽管腺相关病毒 (AAV) 基因治疗已显示出巨大的前景并已导致 5 种治疗方法获得临床批准,1–3 但该载体的 DNA 包装能力较低(4.7 kb),一直阻碍着它的应用。人们付出了巨大的努力来开发双重 AAV 系统,该系统将治疗基因的两部分放在不同的衣壳中,旨在共同感染相同的细胞。4–7 类似的三重 AAV 系统也已被探索。8,9 双重和三重 AAV 系统可以通过 DNA 反式剪接、RNA 反式剪接或通过分裂内含肽的蛋白质剪接机制将其分裂的基因重新组合成完整形式。5,7 然而,双重和三重 AAV 通常需要更高的剂量才能实现有效的细胞共转导,尤其是在需要全身给药时。10 这是有道理的,因为两三个货物到达同一个细胞的可能性应该大致分别对应于单个货物到达细胞的比例的平方或立方。因此,大多数双重或三重 AAV 策略都集中于可以局部给药到目标组织的应用,例如视网膜基因治疗。5,7–9 双重和三重 AAV 的另一个缺点是,它们可能导致未接收所有货物的细胞产生部分蛋白质产物。5 由于这些部分蛋白质的翻译量通常比所需的治疗性蛋白质还要大,因此它们可能导致严重的毒性。缓解双重和三重 AAV 基因治疗相关问题的新方法将大大提高 AAV 在治疗需要递送大量转基因序列的疾病方面的适用性。为了应对这些挑战,我们在此构建了一种全新的基因递送系统“AdAAV”,它由更大的(直径约 100 纳米)Ad 衣壳组成,衣壳上装饰有