性能驱动的腐蚀抑制剂分子设计引起了人们的极大关注,以促进高效的金属腐蚀抑制系统设计。原则上,腐蚀抑制效率与抑制剂分子与目标金属相互作用的化学功能以及随后形成的表面保护膜有关。尽管如此,鉴于抑制剂分子的化学多样性和表面-分子相互作用的复杂性,结构-性能相关性仍然远未全面。在这项工作中,我们以两种取代的苯并噻唑衍生物为例,展示了取代的化学功能如何主导抑制作用,以及随后在镀锌钢上生成的抑制剂膜的稳定性。通过利用特定的作用方式,设计的抑制剂系统已被证明可有效增强腐蚀后金属表面的表面保护,并有望实现可持续的腐蚀保护。这项研究有望为合理的抑制剂工程提供新的知识和见解,以实现量身定制的腐蚀抑制性能。
拦截式过滤器适用于固体和油性颗粒。这些过滤器通过冲击、拦截和聚结原理,迫使从内部过滤通过滤芯的亚微米液体颗粒发生碰撞,从而变成更大的微滴,滴落到过滤器外壳的底部。
我们使用van der waals(vdw) - 纠正的密度函数理论和非平衡绿色的功能方法研究了DNA核苷酸酶[腺嘌呤(A),鸟嘌呤(g),胸腺嘧啶(T)和胞嘧啶(C)]与单层Ti 3 C 2 MXEN的相互作用。所有计算均针对石墨烯进行了基准测试。我们表明,取决于Ti 3 C 2表面上方的核碱基的初始垂直高度,可能是两个相互作用机制,即物理吸附和化学吸附。对于石墨烯,与石墨烯片上方核碱基的初始垂直高度无关,DNA核碱始终将物理呈现在石墨烯表面上。石墨烯的PBE + VDW结合能高(0.55-0.74 eV),并遵循G> a> t> C的顺序,吸附高度在3.16–3.22Å的范围内,表明强大的物理学。对于Ti 3 C 2,PBE + VDW结合能相对较弱(0.16-0.20 eV),并遵循A> g = T> C的阶,吸附高度在5.51–5.60Å的范围内,表明弱物理吸收。化学物质的结合能遵循g> a> t> c的顺序,这是相同的物理学顺序。结合能值(5.3-7.5 eV)表示非常强的化学吸附(约为物理吸附结合能的40倍)。此外,我们的频带结构和电子传输分析表明,对于物理吸附,频带结构没有显着变化,也没有调制状态的传输函数和设备密度。相对较弱的物理吸附和强烈的化学吸附表明,Ti 3 C 2可能无法使用物理吸附方法鉴定DNA核碱基。
CNC宽度测量是通过在Gwyddion软件中与高斯曲线拟合AFM高度轮廓(图S6(a))完成的,然后使用等式的峰值最大值(FWHM)的一半宽度使用公式𝐹𝑊𝐻𝑀=√2ln 2𝑏,其中B是Gwyddion的拟合参数参数输出。要校正AFM尖端扩展,AFM尖端半径和CNC高度可用于计算尖端曲率造成的额外宽度。使用庇护研究的FS-1500 AFM尖端,尖端半径为10 nm,通过AFM测量的MXG-CNC-COOH 1100的高度为2.4 nm。使用图S6(b)中说明的三角学,可以使用公式𝐿=√𝑟2 -𝑑2计算CNC一侧的一半高度的额外宽度为4.75 nm,其中r是尖端radius(10 nm)d是尖端半径半径半径为CNC高度(8.8 nm),是额外的宽度。从13 nm的测得的宽度中减去2𝐿导致校正后的MXG-CNC-COOH 1100宽度为3.5 nm。
一个Labiataire Chrono-endronement,UMR 6249,UFR Sciences et Techniques,University´和Bourgogne Franche-Come´e,16 De Gray,De Gray,25000besançon,France b femoto-st,Apply Mechanics,University,University and Bourgogne franche franche-come franfand-efrance france emp france emp france france emp emp emp emp emp empert- Temps-Fr ´oquance, UMR CNRS 6174, University ´ and Bourgogne Franche-COMT ´ E, 26 Chemin de l 'Epitaphe, 25030 Besançon, France d laboraire interdisciplinary carnot de bourgogne, Umbre 6303 cnrs, university ´ e Bourgogne Franche-Comt ´ E, 9 Avenue Alain Savary, BP 47870,21078 Dijon Cedex,法国和BIA,UR1268,INRAE,44316 NANTES,FRANCE F TRUNSSION,ORA 1008,INRAE,IMP。Yvette Cauchois, 44300 Nantes, France G Synchrotron Soleil, the Orme des Merisiers, 91190 Saint-Aubin, France H Laboratory of Separation and Reaction Engineering-Laboratory of Catalysis and Materials (LSRE-LCM), Faculdade de Egenharia, Universidade do Porto, Rua Dr. Roberto Frias s/n, 4200-465 PORTO,葡萄牙I大学。 Lille,CNR,INRAE,ENSCL UMR 8207,UMET -UMET - 单位´和Mat的Eriaux et Transformations,Lille,法国j创新和冶金学院,贝尔格莱德大学,Karnegijijeva大学,Karnegijijeva大学4,11000 Belgrade,塞尔比亚K塞尔比亚K. Karnegijeva 4,11000 Belgrade,塞尔维亚L大学系统生态与可持续性系,Prot Meward Research Center,Spl。Yvette Cauchois, 44300 Nantes, France G Synchrotron Soleil, the Orme des Merisiers, 91190 Saint-Aubin, France H Laboratory of Separation and Reaction Engineering-Laboratory of Catalysis and Materials (LSRE-LCM), Faculdade de Egenharia, Universidade do Porto, Rua Dr. Roberto Frias s/n, 4200-465 PORTO,葡萄牙I大学。Lille,CNR,INRAE,ENSCL UMR 8207,UMET -UMET - 单位´和Mat的Eriaux et Transformations,Lille,法国j创新和冶金学院,贝尔格莱德大学,Karnegijijeva大学,Karnegijijeva大学4,11000 Belgrade,塞尔比亚K塞尔比亚K. Karnegijeva 4,11000 Belgrade,塞尔维亚L大学系统生态与可持续性系,Prot Meward Research Center,Spl。
方案1:(a)Aptes,Phme,50°C,20 h(b)pybop,dipea,2,dmf,r.t.,18 h; (c)哌啶/DMF(1:3),R.T.,30分钟,然后DCM/TFA(2:1); (d)丙烯酸甲酯,etoH,40°C,5 h; (E)乙二胺,EtOH,45°C,5 h; (f)丙烯酸甲酯,etoH,40°C,5 h; (g)乙二胺,etoH,45°C,5 h(5b); (H)丙烯酸甲酯,EtOH,40°C,24 h; (i)NH 2 -PEG,ETOH,40°C,48 H方案1:(a)Aptes,Phme,50°C,20 h(b)pybop,dipea,2,dmf,r.t.,18 h; (c)哌啶/DMF(1:3),R.T.,30分钟,然后DCM/TFA(2:1); (d)丙烯酸甲酯,etoH,40°C,5 h; (E)乙二胺,EtOH,45°C,5 h; (f)丙烯酸甲酯,etoH,40°C,5 h; (g)乙二胺,etoH,45°C,5 h(5b); (H)丙烯酸甲酯,EtOH,40°C,24 h; (i)NH 2 -PEG,ETOH,40°C,48 H
进入含有化合物的苯酚的粘附和分解机制。21 - 23 Ghahghaey等。24研究了各种石墨烯类型的理论苯酚提取能力,发现用官能团修饰的石墨烯材料表现出较高的依从性和苯酚的能力。虽然对苯酚吸附的理论研究很丰富,但对于各种甲基苯酚分子类型粘附在天然和掺杂表面上的依从性,却缺乏第一个原理分析。对苯酚和内在石墨烯,苯酚和氧化石墨烯之间的相互作用以及与六角硼硝化硼(BN)之间的相互作用进行了研究,该研究使用了周期性密度功能理论中的第一个原理总能量计算进行。的结果表明,氧与铝之间的直接相互作用与吸附在石墨烯层上的苯酚分子的基态分析。结合能和DOS结构还表明,基态构造的特征在于O – Al相互作用的分离距离为1.97Å。此外,结合能的结果表明,与BN纸相互作用时苯酚是化学吸附的。25,26
地表重金属的存在和工业废水排放到环境中造成了严重的健康问题,需要加以处理。在批量系统中仔细研究了 Cr(VI) 在糠醛渣上的吸附。在微波辅助 HTC 中以水为有效介质处理糠醛渣,随后用低浓度氢氧化钾进一步处理固体物质。在最佳条件下(pH 2、25ºC 和 2.5 g/L 吸附剂剂量),在初始浓度为 100 mg/L 时去除 91.72% 的 Cr(VI) 以达到平衡状态。结果表明,在 200ºC 和 0.05 N KOH 浓度下结合微波辅助处理可达到更高的 Cr(VI) 吸附容量(36.91 mg/g)。优化了 pH 值、接触时间、温度和溶液浓度等重要参数以研究其有效性。实验吸附数据最符合 Freundlich 模型,该模型立即遵循伪二级动力学模型。热力学研究调查显示为负值。研究结果表明,糠醛渣产生的改性水炭可被视为高成本吸附剂的替代品。关键词:吸附、Cr(VI)、糠醛渣、动力学等温线、微波辅助 HTC
快速工业化促使经济增长和人口增加,但也导致了重大的环境问题和能源短缺。要有效地应对这些挑战并朝着碳中性能源框架迈进,检查清洁能源选择并减少对化石燃料的依赖至关重要。在这些替代方案中,由于其能量密度和环境亲和力(既丰富又可再生),氢气作为领先的候选者脱颖而出。本研究对根据国家和作者身份进行了详细概述了有关氢吸附和存储的年度科学活动。该研究旨在评估该领域的演变,其主题转变以及全球合作的动态。目前的研究是在2000年至2022年的数据库Web网络网络网络中进行的,使用了与氢吸附,存储和密度功能理论相关的一组预定的关键字集。用RSTUDIO的BiblioMetrix软件包分析了检索到的数据,以评估出版趋势,三个不同时期的研究进化和全球协作网络。当前的研究重点是确定总共2183个文档,后来根据其与氢存储主题相关的评估和组织。在本工作中,评估了881篇文章的资格,通过学位和Pagerank指标确定了60项关键研究,研究的演变在整个三个关键阶段都深入研究。该研究探讨了国家之间的全球合作网络,并确定了该领域的有影响力的作者和领先期刊。所确定的三个不同时期是:初始阶段(2000-2008),其标志着离子液体和氢存储的基本工作。中级阶段(2009-2015)见证了科学生产的增加,以关注金属有机框架的基本原理和方法论。当前阶段(2016-2022)的特征是最佳生产力,突出了对纳米管和电催化剂的创新研究,这些研究促进了有效产生氢的生产。通过鉴定关键趋势,这项研究突出了正在重塑氢存储景观的新型材料和技术的出现。这样的进步指向未来研究和创新的潜在方向,从而在可持续能源解决方案的发展中发挥了至关重要的作用。这项文献计量学研究对定义氢吸附和储存研究领域的不断发展的趋势,贡献和协作动力学有很大的见解。
特定组,例如羧基31,32,胺33,34,35铵和黄体36,在42