使用用于防止这种结果的水龙头微孔过滤器必须在使用几周后更换,这使得它们非常昂贵。新颖的抗菌技术可能会为这些问题提供实用且具有成本效益的预防策略。石墨烯材料通过与细菌细胞的物理相互作用表现出抗菌活性。[7–9]这些柔性,单原子厚的,纳米微米尺寸的床单具有极大的表面积。[10,11]在各种不同的含材料中,氧化石墨烯(GO)经常使用,这是由于其廉价的石墨[12-16]及其亲水性官能团的廉价制备,从而增强其在极性溶剂中的分散剂,并为化学后化学后化化学溶剂提供多种选择。[17,18]
为什么选择吸附式干燥机技术?压缩空气净化必须提供不折不扣的性能和可靠性,同时提供空气质量与最低运营成本之间的适当平衡。无热吸附式干燥机也称为 PSA 干燥机,是最简单的吸附式干燥机类型,长期以来一直是许多行业和应用的首选干燥机。它们简单、可靠且经济高效,对于中小型流量系统,通常是唯一可行的技术。此外,模块化无热干燥机(如 A 系列)可提供更可靠、更小、更紧凑和更轻便的干燥机,可安装在压缩机房或使用点。
这些金属从矿山,矿石加工单元和其他类似行业的提取过程每年在化学过程中产生大量的废水。废水中相对较高的or浓度浓度清楚地表明了其净化的必要性,以保护环境的健康[8]。去除重金属和放射性金属的常见方法包括一种或一种蒸发方法的组合,化学沉积[9],电化学处理[10],离子交换[11,12],溶剂提取[13,14],反渗透[15],膜过程[16-18],以及膜过程[16-18],以及ADSOREPTIONS [19-–21]。这些方法中的每一种都有优点和缺点,根据条件,选择了每种方法或它们的组合。吸附过程用于从水溶液中去除重金属。因此,由于其经济学,灵活性和可重复性,吸附方法比其他方法更有趣[22-24]。
摘要:本文研究了硅胶作为CO 2捕获的有效吸附剂的潜在潜伏期。该研究探讨了吸附机制,CO 2摄取的效率以及影响硅胶吸附能力的某些因素。实验结果表明,在各种条件下,硅胶对CO 2吸附的显着潜力。发现吸附能力高度取决于参数,例如气流速和硅胶的粒径。调查结果表明,在优化的条件下,硅胶可能是降低大气CO 2水平的可行材料。这项研究有助于开发可持续有效的技术,从而通过二氧化碳捕获和存储来减轻气候变化。关键字:CO 2捕获,吸附,效率,硅胶1。简介
摘要。本文回顾了爬壁机器人的进展,重点介绍了吸附优化和新型吸力技术。爬壁机器人因其在危险作业中的潜力以及在不影响机动性的情况下在各种墙面上导航的能力而引起了广泛关注。其中一项创新包括专为光滑墙面设计的机器人,集成了真空吸附系统和粘合带。这种设计增强了机器人的灵活性和可操纵性,并深入分析了其用于攀爬任务的附着机制。已经推导出稳定攀爬所需的吸附力和电机扭矩等关键参数,机器人的原型展示了在不同墙面上的高稳定性和适应性。另一项关键研究深入研究了吸入室中吸入压力的建模和实验分析,强调了不同室轮廓的作用。在腔室底部引入了一种底部限制器的新添加,并使用 3D 建模和计算流体动力学分析了其设计和性能。限制器对机器人粘附效率的影响已通过实验评估,在非抹灰砖墙上显示出良好的效果。通过这些研究,本文强调了爬墙机器人在不同应用中的不断发展和潜力。
图 1:非晶态 SiO 2 块体模型结构的对分布函数 (PDF)。图中用颜色对不同的对进行编码,Si-O 对用蓝线表示,Si-Si 用绿线表示,OO 用红线表示。y 轴表示归一化的对数,x 轴表示相应的距离(单位为 Å)。对于块体非晶态 SiO 2 模型结构和后续图中,Si 原子用黄色球体表示,O 原子用红色表示。
近年来,原位和原位同步辐射高分辨率粉末X射线衍射(HR-PXRD)实验已被认为是一种强有力的工具,可以揭示各种无机、[17,23,24]有机、[25,26]和金属有机多孔材料中的主要相互作用和主要吸附位点[16,20–22]。[15,16,27,28]尽管有这些例子,但迄今为止获得的信息仅限于客体分子的定位和主体框架的修改。直到最近,[16,17,29]才有人努力模拟和理解整个吸附过程,包括构建吸附等温线。然而,这种方法还没有发展到极限,除了晶体结构测定、主体-客体相互作用描述和客体量化之外,还不能研究其他性质,如吸附过程的热力学。在这项工作中,我们展示了可以从目前尚未充分利用的 PXRD 数据中提取大量隐藏但易于获取的信息
摘要:纳米纤维素是一种基于生物的材料,在水纯化领域具有巨大的潜力。可能用作从溶液中去除金属离子的关键吸附剂材料。然而,尚不清楚吸附在纤维素表面上的金属离子的结构。这项工作的重点是使用异常的小角X射线散射(ASAXS)定量地确定带负电荷的箱子型纤维素纳米晶体(CNC)的不同货架的金属离子的三维分布。这些分布会影响这些材料中的水和离子通透性。数据表明,将CNC表面的羧酸盐密度从740 mmol/kg增加到1100 mmol/kg改变了吸附离子的结构的性质,从单层变成了单层结构。单层在CNC纳米颗粒周围建模为船尾层,而多层结构则建模为纳米颗粒周围柱状层顶部的弥漫层。在船尾层中,最大离子密度从1680升至4350 mmol的RB + /(CNC的kg),随着纳米颗粒表面上的羧酸盐密度的增加。此外,数据表明,CNC可以利用多种机制(例如静电吸引力和交际效应)来吸附不同价值的植物。通过了解吸附金属离子的空间组织,可以进一步优化基于纤维素的吸附剂的设计,以提高分离应用中的吸收能力和选择性。关键字:纤维素纳米晶,吸附,异常小角X射线散射,吸附剂,水净化,离子交换a
在近年来,原位和操作同步辐射高分辨率高分辨率X射线衍射(HR-PXRD)实验已被认为是公开主要相互作用和原发性吸附位点的强大工具[16,20-22] [16,20-22],在不断范围内[17,23,23,24] [17,23,24] [17,23,24],[17,23,26] [25,26] [25,26] [25,26] [25,26] [25,26] [25,26] [25,26] [25,26] [25,26] [25,26] [25,26] [25,22][15,16,27,28]尽管有这些示例,但到目前为止获得的信息仅限于来宾分子的定位和宿主框架的修改。直到最近,[16,17,29]为建模和了解整个吸附过程,包括吸附等温线的结构。然而,这种方法尚未扩展到极限,超出了晶体结构的确定,宿主 - 具型相互作用的描述和来宾定量,以研究其他特性,例如吸附过程的热力学。在这项工作中,我们表明可以从如今的pxrd Data
的确,受限的金属原子显示宿主系统费米水平附近的局部原子状态。这些状态,无论是填充还是空,都可以分别有利于氧化或还原化学过程。出现的问题是:(i)SAC的化学活性主要取决于被困的金属原子的类型,还是由二二剂GR层中的金属限制来决定,这意味着金属本身的性质不太相关,并且(ii)底层金属是否扮演着作用。回答这些问题对于设计基于智能SAC的系统至关重要,因为它需要理解有助于系统反应性的所有因素,从而确定具有更大意义的人,从而适当地指导材料准备。遵循此流,在我们最近的工作中,[31]我们成功创建并彻底地表征了基于GR的系统,其中单个CO原子被困在GR