摘要我们提出了一个可转移的力场(FF),用于模拟线性和环状硅氧烷的块状特性以及在金属有机框架(MOF)中这些物种的吸附。与先前的siloxanes FF不同,我们的FF可以准确地再现大量相中每个物种的蒸气平衡。使用标准的Lorentz-Berthelot结合了MOF框架原子规则,在没有开放金属位点的范围内评估了FF的质量与通用力场结合使用,与分散校正的密度功能理论计算相结合。使用此FF的预测与可用的MOF中的硅氧烷吸附的有限的实验数据相吻合。作为使用FF预测MOF中的吸附性能的一个示例,我们提出了模拟,研究了检查二进制线性和环氧烷混合物在大孔MOF中与结构代码FOTNIN中的熵效应。
金属有机框架(MOF)是结晶材料,具有与金属中心结合的有机连接。他们提供了一种新的,有希望的吸附剂,其特征是它们的大量表面积,多样化的高质量结构和化学稳定性。自1995年发现以来(Yaghi等,1995),已经报道了超过20,000种MOF化合物的合成(Deng等,2012; Maurin等,2017),导致它们在吸附和催化行业中广泛利用。在其中,氨基功能化的MOF,具有锆为中央体的UIO-66型,由于其酸和基础耐药性和特殊的结构稳定性,已成为重金属离子吸附的潜在候选。随着MOF的应用越来越普遍,已经探索了各种制备方法。在整个制造过程中,诸如协调环境,协调连接,金属中心离子和化学配体等因素显着影响MOF的结构(Wang等,2013)。几个反应变量,包括温度,金属离子与有机配体的摩尔比,溶剂,反应系统的pH,成分浓度和反应时间,已被确定为最终的MOF结构和特性的关键决定因素(Deng等,2015)。MOF的设计和控制比传统的多孔材料更简单,因为它们可以在受控和轻度条件下合成,从而导致具有增强表面积,渗透率,耐热性和电气特性的材料(He等,2017; Huo等,2017)。重型MOF材料在合成方法中提供多功能性,并具有重金属离子的出色吸附性能,使其在实际应用中很有价值。
磷 (P) 是植物生长必需的营养物质,是不断增长的世界人口增加粮食供应所必需的。然而,农业生产中磷的径流和淋溶会引发藻华、水体富营养化和水质问题 (Bol 等人,2018 年;Withers 和 Haygarth,2007 年)。由于土壤中磷的残留,减少施肥量可能不足以在短期至中期内减少地表水的磷负荷 (Barcala 等人,2020 年;Chardon 和 Schoumans,2007 年;Mellander 等人,2016 年;Sharpley 等人,2013 年)。为了更快地降低地表水中的磷含量,我们需要采取缓解措施,减少耕地磷的扩散输入(Mendes,2020;Penn等,2017;Schoumans等,2014)。这些缓解措施应具有成本效益,并且不占用或很少占用宝贵的耕地,以便农民容易接受。铁包砂 (ICS) 是一种磷酸盐 (PO 4 ) 吸附材料,它是饮用水生产的副产品(Chardon 等人,2012 年;Sharma 等人,2002 年;Van Beek 等人,2020 年)并且可放置在管道排水沟周围或场边缘过滤器中以去除 PO 4 ,不占用额外空间(Chardon 等人,2021 年;Groenenberg 等人,2013 年;Lambert 等人,2020 年;Vandermoere 等人,2018 年)。ICS 涂层中的铁 (Fe) 是在快速砂滤器顶部的砂粒周围形成的,当快速砂滤器去除悬浮的 Fe(氢氧化)氧化物时形成的,这些氧化物是在缺氧含 Fe(II) 地下水曝气后或添加 Fe 盐去除有机物后形成的。 ICS 兼具良好的吸附性能和较高的水力传导率。这些特性加上其低成本、丰富的来源,使其成为大规模 PO 4 去除过滤器的理想材料 (Chardon 等人,2012 年;Vandermoere 等人,2018 年)。
使用周期性边界条件在DFT框架中模拟了碳纳米管和带有双酚A衍生物的石墨烯表面。这样的化合物是环氧黛安树脂的组成部分,它们是飞机结构的重要复合材料。模拟结果允许人们指出,使用专门的交换功能Berland和Hyldgaard开发了用于解释弱范德华相互作用的hyldgaard,而不是DFT-D2方法。我们观察到复合物形成的能量取决于双苯酚A的二甘油乙醚官能团的方向,并通过碳材料的表面是平坦的,例如石墨烯,还是弯曲的,如纳米管。发现,对直径为1 nm的纳米管观察到最强的结合,对此,复合物的能量比二甲醇A的二甲基乙醚A上的复合物低65%。在纳米管的弯曲外表面上,根据电子密度的QTAIM分析,酯衍生物形成了更多的非共价相互作用,并且复合物形成的能量较低。
压缩CO 2 储能技术是平抑可再生能源产量波动的可行解决方案,具有巨大的发展前景。目前面临的主要挑战是如何实现低压CO 2 的高密度储存。为了摆脱低压CO 2 液化储存和大规模洞穴储存带来的工程应用限制,本文提出了一种新型吸附跨临界压缩CO 2 储能系统。采用Fe-MOR(0.25)作为吸附剂,在298 K和0.1 MPa下CO 2 的储存密度可达390.94 kg/m 3 。基于热力学第一定律和第二定律进行热力学模拟。结果表明,设计条件下系统往返效率、火用效率和储能密度分别为66.68 %、67.79 %和12.11 kWh/m 3 。敏感性分析结果表明:高压罐储压和储温对系统具有复合效应,是影响系统性能的关键参数;临界点泄压会引起系统性能突变;换热器效率、压缩机和涡轮等熵效率的提高对系统性能有正向影响。
本文介绍了基于金属有机骨架 (MOF) 晶体表征的孔径分布分析,这些金属有机骨架具有分级孔系统 DUT-32、DUT-75、UMCM-1 和 NU-1000,并利用它来了解这些独特孔结构中的气体吸附。统计分析用于有效地将孔隙空间划分为由孔径标记的不同区域。在模拟 87 K 氩气吸附期间,该孔描述用于发现吸附质相对于不同孔隙的位置。为了进一步研究吸附行为,开发了一种聚类孔隙环境以定位孔隙中心的方法。这些孔隙中心用于观察孔隙内气体的分布,从孔隙中心的独特视角描述填充事件期间的吸附质位置。本文介绍的方法提供了有关孔隙结构和吸附特性的无与伦比的信息,这些信息无法通过现有方法获得,现在可以应用于新材料以揭示新的吸附过程。
方案1:(a)Aptes,Phme,50°C,20 h(b)pybop,dipea,2,dmf,r.t.,18 h; (c)哌啶/DMF(1:3),R.T.,30分钟,然后DCM/TFA(2:1); (d)丙烯酸甲酯,etoH,40°C,5 h; (E)乙二胺,EtOH,45°C,5 h; (f)丙烯酸甲酯,etoH,40°C,5 h; (g)乙二胺,etoH,45°C,5 h(5b); (H)丙烯酸甲酯,EtOH,40°C,24 h; (i)NH 2 -PEG,ETOH,40°C,48 H方案1:(a)Aptes,Phme,50°C,20 h(b)pybop,dipea,2,dmf,r.t.,18 h; (c)哌啶/DMF(1:3),R.T.,30分钟,然后DCM/TFA(2:1); (d)丙烯酸甲酯,etoH,40°C,5 h; (E)乙二胺,EtOH,45°C,5 h; (f)丙烯酸甲酯,etoH,40°C,5 h; (g)乙二胺,etoH,45°C,5 h(5b); (H)丙烯酸甲酯,EtOH,40°C,24 h; (i)NH 2 -PEG,ETOH,40°C,48 H
南卡罗来纳大学,哥伦比亚分校,哥伦比亚大学,美国大街300号,美国SC 29208,美国B化学工程系,南卡罗来纳大学,哥伦比亚大学,哥伦比亚大学,美国SC 29208,美国化学与生物工程系,伦斯多利教授工程师,伦斯勒理工学院,纽约州TROY,纽约市DA180 Aliment Alokem,K. Buk-Gu,Daegu 41566,朝鲜共和国e公民与建筑工程学院,桑格克万大学,2066年,Seobu-Ro,Jangan-16,GU,Suwon,Suwon,Gyeonggi-Do 16419美国南卡罗来纳州南卡罗来纳大学生物医学工程计划,美国南卡罗来纳州29208,美国南卡罗来纳大学,哥伦比亚分校,哥伦比亚大学,美国大街300号,美国SC 29208,美国B化学工程系,南卡罗来纳大学,哥伦比亚大学,哥伦比亚大学,美国SC 29208,美国化学与生物工程系,伦斯多利教授工程师,伦斯勒理工学院,纽约州TROY,纽约市DA180 Aliment Alokem,K. Buk-Gu,Daegu 41566,朝鲜共和国e公民与建筑工程学院,桑格克万大学,2066年,Seobu-Ro,Jangan-16,GU,Suwon,Suwon,Gyeonggi-Do 16419美国南卡罗来纳州南卡罗来纳大学生物医学工程计划,美国南卡罗来纳州29208,美国南卡罗来纳大学,哥伦比亚分校,哥伦比亚大学,美国大街300号,美国SC 29208,美国B化学工程系,南卡罗来纳大学,哥伦比亚大学,哥伦比亚大学,美国SC 29208,美国化学与生物工程系,伦斯多利教授工程师,伦斯勒理工学院,纽约州TROY,纽约市DA180 Aliment Alokem,K. Buk-Gu,Daegu 41566,朝鲜共和国e公民与建筑工程学院,桑格克万大学,2066年,Seobu-Ro,Jangan-16,GU,Suwon,Suwon,Gyeonggi-Do 16419美国南卡罗来纳州南卡罗来纳大学生物医学工程计划,美国南卡罗来纳州29208,美国
材料科学中高级计算机模拟的时代为(纳米 - )材料性能设计了硅计算实验中的巨大潜力。可以通过原子模型和计算机模拟来揭示各种环境中纳米颗粒的吸附效率。砷(AS)是重要的全球分布污染物之一,对人类健康和环境有危险的影响,它可以根据其形状和大小与铁纳米晶体(例如,赤铁矿(Fe 2 O 3))强烈结合。在这里,我们开发了一种新型的动力学蒙特卡洛(KMC)模型,该模型能够探索和描述Fe 2 O 3纳米晶体的形状效率依赖性,并与砷酸盐污染的水接触。这个新设计的模型证明了纳米晶体在其表面上去除有毒(AS)的性能。当前的模型为在不同的环境相关情况(例如地下水,湿地和水处理系统)下,开辟了新的途径,用于设计用于纳米颗粒的进一步高级KMC模型。除了在介绍的模型中实现的双齿吸附复合物外,还应将单次和外部吸附复合物纳入KMC模型。可以通过实现pH和背景离子来解决详细的环境控制。