在三阴性乳腺癌 (TNBC) 患者中,有证据表明肿瘤起始细胞 (TIC) 具有干细胞样特性,可导致侵袭和转移。HSP90 在 TIC 发展中对许多客户蛋白的构象维持起着关键作用。因此,我们假设新型 C 端 HSP90 抑制剂 KU711 和 KU758 可以靶向 TIC,并代表一种有希望克服转移的策略。用 HSP90 抑制剂 KU711、KU758 和 17-AAG 治疗的人乳腺癌细胞 (MDA-MB-468LN、MDA-MB-231) 经流式细胞术评估,TIC 标志物 CD44 和醛脱氢酶 (P < 0.01) 下降 50 – 80%。在以 2.5 µ M KU711 和 0.31 µ M KU758 开始处理 TNBC 细胞后,观察到用于评估自我更新的球体形成减少。KU 化合物还以剂量依赖性方式阻断 TNBC 细胞的侵袭和迁移。观察到 HSP90 客户端的敲低,而促存活的 HSP70 水平没有任何变化。在体内,在小鼠原位乳腺癌模型中,用 KU758 和 KU711 治疗分别导致肿瘤体积与对照相比缩小约两倍和四倍,且没有表现出毒性。总之,C 端 HSP90 抑制剂是体外和体内对抗 TNBC 的有效新型疗法,因为它们靶向 TIC 并阻断侵袭、EMT 转变和自我更新。
棉酚是棉花 ( Gossypium hirsutum L.) 中常见的一种萜醛,对植物抵御害虫和病原体至关重要。然而,其固有毒性限制了棉籽在食品和饲料中的使用。这项研究重点验证了 (+)-delta- 杜松烯合酶基因家族的表达模式,该基因家族在棉酚的生物合成中起着至关重要的作用。我们的目标是利用这些信息指导基因组编辑策略,以降低棉籽中的棉酚水平。我们使用定量实时 PCR (qRT-PCR) 分析了 32 个 (+)-delta-杜松烯合酶基因在胚珠和叶片中的表达,涵盖六个发育阶段,从开花后 (DPA) 20 到 45 天,每隔五天一次。我们的结果显示,无论处于哪个发育阶段,都有 10 个基因在胚珠中表达。其中,六个基因:Gohir.A04G023700、Gohir.D05G363800、Gohir.A08G087000、Gohir.D05G363900、Gohir.D05G364000 和 Gohir.D05G364300,在各个阶段始终表现出明显更高的表达水平。值得注意的是,Gohir.D05G363900、Gohir.D05G364000 和 Gohir.D05G364300 在所有阶段都表现出略高的表达水平,使其成为靶向基因组编辑的合适候选基因。这些发现为 (+)-delta- cadinene 合酶基因家族的表达动态提供了宝贵的见解,并确定了未来基因组编辑实验的潜在靶基因,旨在通过降低棉酚含量来提高棉籽的利用率。
B-RAF激酶抑制剂,例如vemurafenib(PLX4032)和dabrafenib对BRAF氧化甲状腺癌的治疗功效有限。癌症干细胞(CSC)在肿瘤复发,耐药性和转移中起重要作用。CSC是否在抑制B-RAF激酶抑制剂的抗肿瘤活性中发挥作用仍然未知。在这里,我们报告说,vemurafenib(PLX4032)在两种间隙性甲状腺癌细胞系中引起了几种相关基因的表达,包括Gli1,Snail,BMI1和Sox2,SW1736和8505C,但在A375细胞中降低了A375细胞的表达,A375细胞的表达,A375细胞中,A375细胞的表达。PLX4032促进了甲状腺癌干细胞自我更新,这是醛醛脱氢酶阳性细胞和甲状腺酸盐数量增加所证明的。从机械上讲,PLX4032激活了通过HER3激活PI-3和有丝分裂原激活的蛋白激酶途径,以交叉激活Gli1(Sonic Hedgehog(SHH)途径的转录因子)。gant61是一种特异性GLI1的抑制剂,阻止了在PLX4032处理的甲状腺癌细胞的体外和体内在两种甲状腺癌异种移植模型中的表达。gant61仅处理弱抑制了SW1736肿瘤的生长,但在组合使用时会增强PLX4032的抗肿瘤活性。我们的研究提供了有关甲状腺癌如何对B-RAF激酶抑制剂反应较差的机械见解,并表明将B-RAF和SHH途径组合起来可能会克服甲状腺癌耐药性。
摘要。目标。癌症干细胞(CSLC)与肿瘤复发,转移和耐药性密切相关。PHD指域蛋白5A(PHF5A)与非小细胞肺癌(NSCLC)的肿瘤发生和发展有关。PHF5A在NSCLC CSLC中的作用和调节机制尚不清楚。这项研究旨在确定CSLC的生物学特征以及PHF5A在维持NSCLC中的作用。方法。H1299-SPHERES和A549-SPHERE通过流式细胞仪通过肿瘤组形成测定和CSLC获得。使用免疫荧光染色,qRT-PCR和Western印刷物测试了CD133,E-钙粘蛋白1,E-钙粘蛋白,波形蛋白,PHF5A和组蛋白脱乙酰基酶8(HDAC8)的表达。CCK-8和Transwell分析来确定NSCLC中CSLC和粘附单层细胞的增殖,迁移和侵袭能力。我们调节CSLC中的PHF5A表达和HDAC活性,以探索NSCLC组织中靶蛋白的PHF5A在Stemness维持中的机理。结果。与单层细胞相比,CSLCs对顺铂介导的抑制,迁移和侵袭的抑制作用以及pHF5A和HDAC8的高表达降低,并伴有EMT标记的改变。NSCLC CSLC中PHF5A的靶向敲低导致茎表型和HDAC8表达降低,而HDAC活性的抑制会影响Stemness的维持。此外,靶蛋白的表达在NSCLC组织中显示出一致的变化。结论。与单层细胞相比,NSCLC的癌症样表型特性发生了变化,PHF5A参与了CSLC的干性维持,并且此过程可能与HDAC8的激活有关。
稻米的香味是决定其可接受性和市场竞争力的关键品质性状。对稻米香味的深入研究发现,甜菜碱醛脱氢酶(OsBADH2)的突变导致稻米产生香味。CRISPR/Cas9 系统等基因编辑技术为通过定点诱变加速改善稻米品质开辟了新途径。在本研究中,我们利用 CRISPR/Cas9 工具创建 OsBADH2 的新等位基因,从而将香味引入优良非芳香水稻品种 ASD16。使用针对 OsBADH2 第 7 外显子中 sgRNA 侧翼区域的引物对假定的转化子进行 PCR 分析,发现 T 0 代中有 37.5% 的潜在多等位基因突变。对 T 0 系叶片进行感官评价测试,鉴定出属于五个独立产生香味事件的十三个系。这些芳香 T 0 系的序列分析确定了 22 种不同类型的突变,这些突变位于 sgRNA 区域的 -17 bp 至 +15bp 范围内。品系 #8-19 中的 -1/-2 bp 缺失和品系 #2-16 中的 -8/-5 bp 缺失产生了强烈的香气,并且该表型在 T 1 代中稳定遗传。比较挥发性谱检测发现品系 #8-19 的 T 1 子代谷粒中存在新的芳香化合物,即吡咯烷、吡啶、吡嗪、吡嗪和吡唑。这项研究证明了使用 CRISPR/Cas9 创造 OsBADH2 的新等位基因可将香气引入任何非芳香水稻品种。
摘要:胶质瘤具有死亡率高、术后生存率低的特点。尽管目前有多种治疗方法和分子分型,但胶质瘤的治疗失败率和复发率仍然很高。鉴于现有治疗手段的局限性,纳米技术已成为一种替代治疗选择。纳米粒子,例如聚多巴胺(PDA)基纳米粒子,具有可靠的生物降解性、高效的载药率、相对较低的毒性、较好的生物相容性、优异的黏附性能、精确的靶向递送和强的光热转换性能。因此,它们可以进一步增强胶质瘤患者的治疗效果。此外,聚多巴胺含有邻苯二酚、氨基和羧基、活性双键、邻苯二酚等活性基团,可以与含有氨基、醛基或巯基的生物功能分子发生反应(主要包括自聚合、非共价自组装、π-π堆积、静电引力相互作用、螯合、包覆和共价共组装),形成可逆动态共价席夫碱键,对pH值极为敏感。同时,PDA具有良好的粘附能力,可以进一步进行功能修饰。因此,本综述旨在总结PDA基纳米载体在胶质瘤中的应用,并深入了解载药PDA基纳米载体(PDA NPs)的治疗效果。对这些方面的深入了解和论证有望为开发更合理、更有效的PDA基癌症纳米药物递送系统提供更好的方法。最后,我们讨论了PDA在此领域未来应用的预期和一些个人观点。关键词:胶质瘤,聚多巴胺,聚合物纳米粒子,光热疗法,化疗,协同疗法
简介:由于乳腺癌的高发性在全球范围内产生了深远的影响,迫切需要改善患者的临床结果,包括努力利用生物活性天然产物作为治疗或预防措施。据报道,柠檬醛(柠檬草精油)对乳腺癌细胞系具有细胞毒性。本研究的目的是确定柠檬醛靶向乳腺癌细胞中醛脱氢酶阳性(ALDH +)细胞的能力。方法:在无血清培养基中培养 MCF-7 和 MDA-MB-231 细胞以产生多细胞肿瘤球体,以评估柠檬醛作为抗增殖剂的作用。用已确定的 IC 50(分别为 50±4.30 µM 和 56±3.17 µM 的柠檬醛)处理细胞以研究柠檬醛的细胞毒性。使用碘化丙啶 (PI) 和 Hoechst 33342 进行染色以确定细胞增殖和活力。最后,通过 ALDEFLUOR 测定法对 ALDH+ 细胞进行量化。通过方差分析 (ANOVA) 和独立 t 检验进行差异分析,p<0.05 被认为具有统计学意义。结果:用柠檬醛处理后,两种癌细胞系中的球体尺寸均减小。PI 和 Hoechst 33342 染色还显示柠檬醛产生了正常细胞和正在发生凋亡和坏死的细胞混合物。ALDE FLUOR 测定法分析显示柠檬醛显着 (p<0.05) 抑制了 MCF7 细胞中 ALDH+ 细胞的数量。结论:证明柠檬醛通过抑制 ALDH 活性减少了 MCF7 乳腺癌球体中的 ALDH+ 细胞群。
大部分鼻咽癌患者确诊时已为晚期,同步放化疗是该类患者的主要治疗方法,但该方法具有多种副作用。为了提高鼻咽癌放化疗的疗效并减少其副作用,我们构建了一种多功能叶酸(FA)靶向磁性纳米复合材料,该复合材料同时载有组织因子通路抑制剂-2(TFPI-2)和顺铂(CDDP)。这种新型纳米复合材料(FA-MNP/CDDP/TFPI-2)是由含有TFPI-2质粒的FA-甲氧基聚乙二醇-聚乙烯亚胺(FA-MPEG-PEI)与负载CDDP的醛基海藻酸钠修饰的磁性纳米粒子经酰胺化和静电吸附得到的。透射电子显微镜(TEM)图像显示单个磁铁矿粒子核心的尺寸约为11.5纳米。利用核磁共振(NMR)光谱和紫外(UV)分光光度法对纳米复合材料的结构和组成进行鉴定和分析。荧光分析、普鲁士蓝铁染色、磁共振(MR)成像和全身荧光成像结果表明,FA-MNP/CDDP/TFPI-2具有较高的基因转染效率,并能通过叶酸受体(FR)介导的递送靶向肿瘤细胞。共递送分析表明,所得的FA-MNP/CDDP/TFPI-2复合材料比单独使用CDDP或TFPI-2可引起更多的细胞凋亡。结果表明,FA-MNP/CDDP/TFPI-2复合材料合成成功,并表明它是FR的特异性分子靶点,对HNE-1细胞的生长有明显的抑制作用。
临床前研究显示二甲双胍对多种癌症有抗肿瘤作用(10,11)。流行病学研究表明,与未服用二甲双胍的患者相比,服用二甲双胍的卵巢癌患者的 OS 明显更长(12-16),尽管结果并不完全一致。人们提出了二甲双胍抗癌活性的多种机制。多项研究表明二甲双胍调节 AMPK 信号转导、AKT 活性并诱导细胞凋亡(17,18)。代谢作用与糖异生、线粒体功能和细胞代谢有关(19,20)。据报道,二甲双胍可抑制上皮-间质转化 (EMT)、抑制 IGF 信号转导并选择性抑制癌症干细胞样细胞 (CSC) 生长(21-25)。据报道,在卵巢癌中,二甲双胍可逆转化疗耐药性、减少癌细胞迁移和转移并预防 EMT (17、20、26–28)。我们报道二甲双胍靶向乙醛脱氢酶阳性 (ALDH +) 卵巢 CSC (29、30) 并增强对化疗的反应 (31)。目前,至少有 55 项临床试验正在评估二甲双胍作为癌症治疗方法 (32)。在这里,我们介绍了一项非随机 II 期研究的结果,该研究研究了二甲双胍联合化疗治疗非糖尿病晚期 EOC 患者。本研究的主要目的是实现转化终点,以评估二甲双胍对 CSC 和 18 个月无复发生存期 (RFS) 的影响。
cfh f gctgtatgcactgaatctgga 136 r actgggtacgtgtgatttcatctccccccccccccccccccccccccccccccccccccccccccccccccc 123 r acgtttttttttcgctgcctgagtc cd44 f acacgagaagaagaagagagagcaggac 135 ttatctgcagtggatcgagttc 150 r gtagcttttcctttcctatgccaaacc oct4 f gagaatttgtgttgtcctggagtgc150 r tcgttgtgtgtgcatagtgctgtcgctgtcgcgtcggctg sox2 TTCGGGTAGTGGAAAACCAG 108 R AGTAGAAATACGGCTGCACC Klf4 F ACCTACACAAAGAGTTCCCATC 136 R TGTGTTTACGGTAGTGCCTG EpCAM F CAGACAAGGACACTGAAATAACC 134 R TGTGATCTCCTTCTGAAGTGC ALDH1A3 F cttctgccttagagtctggaac 138 r tcacttctgtgtgtattcggcc abcg2 f aggtctgtgtgtggtggtcaatctcac 142 r tcctgttgcattgagtcctg nanog nanog nanog f gaaatacctcctcctcagcctcctcctccctccagc149 ggatcgggttaagggaaagag 139 r aggagacataggcgagaggggggggggggg epas1 f cccatgtctccaccttcaag 136 r aaggcttgcttcttcattccttcatctcccccccccccccccccccacacaagcaagactc146 r gggggggggtccgtccccccctccctcctcccctcct4 105 r tcttcacggaaacagggttc ptprj f caagcaggctcaggactatg 142 r ggaggtgaAatggaAtggaActgtct myo6 f acgtgctccaaagtctgtgttac12 atccatgagcttttttccccagβ-肌动蛋白f cccagcacaatgaagatcaag 136 r gactcgtcatcatactcctgcttg abcg2,atp biding cassette cassette subfimily g ement g ement 2; Aldh1a3,醛脱氢酶1家族成员A3; CFH,补体因子H; CXCR4,C-X-C基序趋化因子受体4; EPAS1,内皮PAS结构域蛋白1; Epcam,上皮细胞粘附分子; EPB41L3,红细胞膜蛋白带4.1样3; GJA1,间隙连接蛋白α1; KLF4,KLF转录因子4; Myo6,肌球蛋白VI; PTPRJ,蛋白酪氨酸磷酸酶受体类型J