肺癌仍然是全球癌症相关死亡率的主要原因,诸如SMARCB1,MEOX2和GLI-1之类的基因在其恶性肿瘤中起着显着作用。尽管已知参与,但这些基因对肺癌进展的特定分子贡献,尤其是它们对EGFR和GLI-1的表观遗传修饰对Oncogenes序列的影响,以及它们对基于EGFR-TKI的疗法的反应,尚未得到充分探索。我们的研究揭示了MEOX2和GLI-1是GLI-1和EGFR遗传模式的关键分子调节剂,进而在转录和表观遗传上影响肺癌中的EGFR基因表达。此外,发现MEOX2显着促进体内肺肿瘤进展并降低EGFR-TKI疗法的有效性。相反,检测到MSWI/SNF衍生的亚基SMARCB1通过在GLI-1和EGFR遗传序列中诱导表观遗传修饰,从而抑制肿瘤生长并增强体内研究中的肿瘤治疗反应。此外,我们的结果表明,BRD9可能有助于激活肺癌Oncogenes GLI-1和EGFR。这样的发现表明,Smarcb1和Meox2可以作为人类肺癌疗法中重要的预后生物标志物和靶基因,为在肺部恶性疾病领域开发更有效和选择性治疗策略提供了新的机会。
HAL 是一个多学科开放存取档案库,用于存放和传播科学研究文献,无论这些文献是否已出版。这些文献可能来自法国或国外的教学和研究机构,也可能来自公共或私人研究中心。
1 巴黎萨克雷大学,古斯塔夫鲁西,INSERM U981,维尔瑞夫; 2 药物开发部(DITEP),Gustave Roussy,维尔瑞夫; 3 维尔瑞夫古斯塔夫鲁西肿瘤医学系; 4 PRISM 研究所,Gustave Roussy,维尔瑞夫; 5 巴黎萨克雷大学 INSERM 生物统计学和流行病学办公室,Gustave Roussy,Oncostat U1018,标记为 Ligue Contre le Cancer,Villejuif; 6 实验和转化病理学平台(PETRA)、基因组平台 - 分子生物病理学单位(BMO)和生物资源中心、AMMICA、INSERM US23/CNRS UMS3655、Gustave Roussy、巴黎萨克雷大学、维尔瑞夫; 7 维尔瑞夫古斯塔夫鲁西医学生物学和病理学系; 8 介入放射学系,Gustave Roussy,维尔瑞夫; 9 法国马赛艾克斯马赛大学、法国国立科学研究院、法国国家健康与医学研究院、法国马赛临床医学研究中心
慢性疼痛病理是由周围和/或中枢神经系统的适应不良变化引起的,是一种影响 20% 欧洲成年人口的致残性疾病。更好地了解这种发病机制将有助于确定新的治疗目标。最近,从大脑网络之间连贯的低频血流动力学波动中提取的功能连接 (FC) 为研究大规模大脑网络及其在神经/精神疾病中的破坏提供了一种强有力的方法。对 FC 的分析通常是对随时间推移的平均信号进行的,但最近,对 FC 动态的分析也提供了新的有希望的信息。考虑到持续性疼痛动物模型的局限性以及它们作为增进我们对慢性疼痛致病性神经生物学基础的理解的有力工具,本研究旨在通过使用功能性超声成像(一种具有独特时空分辨率(100 μ m 和 2 ms)和灵敏度的神经成像技术)来确定临床相关的持续性炎症疼痛(佐剂性关节炎)动物模型中功能连接的变化。我们的研究结果显示,关节炎动物的 FC 发生了显著变化,例如躯体运动 (SM) 网络的一个子部分,发生在疾病开始后数周。此外,我们首次证明通过超声评估的动态功能连接可以为我们定义为大脑状态的动态模式提供定量和可靠的信息。虽然主要状态由 SM 网络中血流动力学波动的整体同步组成,但关节炎动物在统计上花费更多时间处于其他两种状态,其中发炎后爪的初级感觉皮层的波动与 SM 网络的其余部分不同步。最后,将 FC 变化与个体动物的疼痛行为相关联表明 FC 改变与疼痛的认知或情感方面之间存在联系。我们的研究引入了 fUS 作为一种新的转化工具,以增强对慢性疼痛主要临床前模型中动态疼痛连接组和大脑可塑性的理解。
*通讯作者。j.h.veldink@umcutrecht.nl。†这些作者作为首位作者也同样为这项工作做出了贡献。‡这些作者同样为这项工作做出了同样的贡献,因为共同作者§A作者名单及其隶属关系出现在本文的末尾。作者贡献:样本确定和数据生成由P.J.H.,R.A.J.Z.,E.H.,G.L.S.,M.F.N.,E.M.W.,W.V.R.,J.J.J.J.F.A.V.V.V.V.V.V. N.T. P.A.M.,M.N.,G.N.,D.B.R.,R.P.,K.A.M. M.P.,M.D.C.,S.P.,M.W.,G.R.,V.S.,J.E.L.,C.E.S.,P.M.A.,A.F.M.,M.A.V.E.wgs由P.J.H.,R.A.J.Z.,W.V.R.,J.J.F.A.V.V.V.,A.M.D.,G.H.P.T.,K.R.V.E.WGS质量控制是由P.J.H.,R.A.J.Z.,W.V.R.,J.J.F.A.V.V.,M.M.,K.P.K.,P.V.D。和J.H.V.数据分析是由P.J.H.,R.A.J.Z.,E.H.,J.M。和J.H.V.进行的。手稿的写作是由P.J.H.,R.A.J.Z.,J.M。和J.H.V.完成的。修订手稿由P.J.H.,R.A.J.Z.,M.F.N.,W.V.R.,J.J.J.F.A.V.V.V.,H.-J.W.,D.B.,R.J.P.,R.J.P.,R.J.P.,N.R.W.
[11C] -PIB-PET扫描。受试者在PIB SUVR> 1.265的截止水平下被认为是β-淀粉样蛋白阳性。 N.A.=未评估。(d)横截面II及其4个诊断组的特征。分组基于认知测试(健康对照主题= HC,轻度认知障碍= MCI)和由[18F] -Flutemetamol(FMM)-PET扫描测量的皮质β-淀粉样蛋白。受试者在fmm centiloid> 12的截止水平上被认为是β-淀粉样蛋白阳性。(e,f)t分布的随机邻居嵌入(TSNE)和所有CD45 + PBMC的群集和流量聚类在所有受试者中平均的I(e)(e)的所有受试者(tsne设置:迭代:迭代= 12'00 000,事件,事件= 10'000 = 10'000 = 10'000; permulation = 10'000; inii; (f)(TSNE设置:迭代= 4'000,事件= 10'000,Perplexity = 50; Flowsom设置:K15,合并为八个主要细胞种群)。(g,h)热图,用于鉴定八个主要的CD45 + PBMC簇。热图显示了横截面I(G)和横截面II(H)的Arcsinh转换的中位标记强度。
帕金森人与疾病相关的DNA甲基化和羟甲基化改变了人脑大脑Juliana I. Choza,Ba* 1,Mahek Virani,Ba* 1,Nathan C. Kuhn,Nathan C. Kuhn,BS 3,BS 3,Marie Adams,MS 4,MS 4,Joseph Kochmanski,Joseph Kochmanski,Phd 3,phd 3,Phd I.Berson I.Bern and phd I.Bern of phd I.Bern of phd。毒理学,欧内斯特·马里奥(Ernest Mario),罗格斯大学(Rutgers University),皮斯卡塔维(Piscataway),新泽西州2 2环境与职业健康科学研究所,罗格斯大学(Rutgers University),皮斯卡塔威(Piscataway Bernstein,Bernstein.alison@rutgers.Edu环境与职业健康科学研究所Ernest Mario药学院,Rutgers University,170 Freylinghuysen Rd Piscataway,NJ 08854 orcid orcid IDS JULIANA I.CHOZA I. CHOZA I. CHOZA:0000-0001-701-7038-98-98-97550 MAHEKINI:VIRANANI:VIRANANI。 0009-0006-6094-4478玛丽·亚当斯(Marie Adams):0000-0001-7909-2339 Joseph Kochmanski:0000-0002-8472-3032 Alison I.Bernstein:000000-0002-5589-431-4318
患有2型糖尿病(T2D)的个体患有骨折的风险增加,而骨矿物质密度降低。据推测,由T2D引起的高血糖状态在骨的有机基质中形成了过量的晚期糖化终止产物(年龄),这些骨骼基质被认为可以使胶原蛋白网络加强并导致机械性能受损。但是,这些机制尚不清楚。这项研究旨在研究ZDF(FA/FA)大鼠在12岁,26岁和46周龄的T2D发育和进展过程中糖尿病皮质骨的几何,结构和物质特性。纵向骨生长早在12周的年龄就受到了损害,ZDF(FA/ FA)大鼠与对照组(FA/ +)的ZDF(FA/ FA)大鼠的骨骼大小显着降低。糖尿病大鼠具有明显的结构缺陷,例如通过三分弯曲测试测量的弯曲刚度,最终力矩和能量到失败。随着疾病的进展,通过考虑骨几何形状来测量的组织材料特性会改变,ZDF(FA/FA)大鼠的产量和最终强度显着降低。FTIR对皮质骨粉末的分析表明,组织材料与组织组成的变化相吻合,与年龄匹配的对照组相比,ZDF(FA/FA)大鼠具有长期糖尿病的长期糖尿病:碳酸盐比率降低,磷酸盐比和酸性磷酸盐含量降低。通过Fluo Rescent分析测量的年龄积累在具有长期T2D的ZDF(FA/FA)大鼠的皮肤中较高,菌株之间的骨骼年龄没有差异,并且与骨强度相关的年龄都不相差。总而言之,糖尿病ZDF(FA/FA)大鼠的骨骼脆弱性可能是通过最初受到骨骼生长受损和开发影响的多因素机制而发生的,并继续进行骨转换过程,从而降低了骨质的质量,并随着疾病的进展而降低骨骼质量,并损害了生物力学特性。
摘要:胶质母细胞瘤 (GBM) 是一种源自中枢神经系统神经干细胞的高度侵袭性和致命性肿瘤,具有显著的组织病理学变异和基因组复杂性,这导致其快速进展和治疗耐药性。线粒体 DNA (mtDNA) 拷贝数 (CN) 的改变在 GBM 的发展和进展中起着至关重要的作用,影响肿瘤生物学的各个方面,包括能量产生、氧化应激调节和细胞适应性。mtDNA 水平的波动,无论是升高还是降低,都会损害线粒体功能,可能破坏氧化磷酸化并扩增活性氧的产生,从而促进肿瘤生长并影响治疗反应。了解 mtDNA-CN 变异的机制及其与肿瘤微环境中遗传和环境因素的相互作用,对于推进诊断和治疗策略至关重要。针对 mtDNA 改变可以增强治疗效果,减轻耐药性并最终改善这种侵袭性脑肿瘤患者的预后。本综述总结了现有的有关线粒体 DNA 变异的文献,特别强调了线粒体 DNA-CN 的变化及其与 GBM 的关联,通过调查 1996 年至 2024 年期间发表的文章,这些文章来自 Scopus、PubMed 和 Google Scholar 等数据库。此外,本综述还简要概述了线粒体基因组结构、有关线粒体 DNA 完整性和 CN 调节的知识,以及线粒体如何显著影响 GBM 肿瘤发生。本综述进一步介绍了恢复线粒体 DNA-CN 的治疗方法,这些方法有助于优化线粒体功能并改善健康结果。