近年来,高精度感测和高质量的交流对综合电路的运行频率施加了巨大的要求,从W波段到G频段到G频段甚至Terahertz,这一频率增加了。[1,2]采用了多种技术来扩展摩尔法律并证明设备的频率特征,例如新型结构[3,4]和制造技术。[5]基于INP的高电子迁移式晶体管(HEMTS)具有降级的高载体板密度,峰值漂移速度和低轨道迁移率,并且记录的频率特性已超过1 THz。[6]因此,它们被认为是即将到来的THZ卫星通信和深空检测系统的功率放大器(PAS)和低噪声放大器(LNA)的有前途的候选者。[7 - 10]
摘要 — 在高剂量脉冲带电粒子束中,所有在线探测器都会因离子复合而饱和。因此,不可能单独计数探测器脉冲。碳化硅由于其高带隙、高热导率和高位移能量而被视为替代品。实时分析波形在带宽、可测量能量范围、传感器尺寸、数据速率方面具有挑战性。在此背景下,设计了一个用于辐射信号处理的模拟前端 (AFE)。它基于跨阻放大器 (TIA) 和电荷敏感放大器 (CSA) 来分析生成信号的形状。描述了用于表征高探测器电容 AFE 的方法。还介绍了从辐射环境中的模拟、实验和测量中提取的结果。
此处使用COTOMOS®CT128呈现的双电池Cotomos®电路可被视为第二代技术电路。有关第一代电路,请参见Nwavguy在参考文献3中的“ O2耳机放大器”。这个非常受欢迎的双电池,您自己(DIY)耳机放大器使用电池保护电路,每个电源导轨上都有离散的MOSFET。由于一个是N通道,而另一个P则必须从两个不同的比较器中馈入,以倒入一个栅极信号。一个比较器拉下来(快速),另一个比较器拉起(较慢)。电路的净结果仍然是一个电源导轨,而另一个电路则在另一个时段下降时,而不是同时开关。
摘要 本文介绍了一种用于植入式生物医学设备的超低压 (ULV) 高分辨率低功耗连续时间 delta-sigma 调制器。二阶单比特调制器采用前馈架构和新型全差分 ULV 放大器,在 0.4 V 电源下实现高信噪比加失真比 (SNDR) 和节能运行。该放大器采用栅极输入 AB 类输出拓扑和局部共模反馈 (CMFB) 环路,以实现大输出摆幅,从而减少谐波失真并降低功耗。采用强大的时钟发生器来确保调制器在 ± 10% 电源变化范围内的一致性能。该调制器采用 130 nm CMOS 技术制造,带有常规 VT 晶体管。测量结果表明,在 500 Hz 带宽内,在标称 0.4 V 电源下,该调制器实现了 75.5 dB SNDR,功耗为 6.6 µ W。在最近报道的用于植入式生物医学应用的 0.4 V 或以下电压下工作的 DSM 中,所实现的 SNDR 是最好的。即使在 0.32 V 电源下工作,该调制器也能实现 69 dB SNDR,功耗为 3.7 µ W。关键词:连续时间、Delta-Sigma 调制器、生物医学设备、模拟数字转换器、超低压放大器、超低压电路分类:集成电路(存储器、逻辑、模拟、射频、传感器)
2不可压缩稳定性理论的公式15 2.1平行流稳定方程的推导。。。。。。。。。。。。。。。。。。。。。。。。。。。15 2.2非平行稳定性理论。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。17 2.3时间和空间理论。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。18 2.3.1时间扩增理论。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。18 2.3.2空间扩增理论。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。19 2.3.3时间和空间理论之间的关系。。。。。。。。。。。。。。。。。。。。。。20 2.4还原为四阶系统。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。21 2.4.1转换为2D方程 - 时间理论。。。。。。。。。。。。。。。。。。。。21 2.4.2转换为2D方程 - 空间理论。。。。。。。。。。。。。。。。。。。。。22 2.5特殊形式的稳定性方程式。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。23 23 2.5.1 Orr-Sommerfeld方程。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。 div>23 2.5.2第一个端口方程的系统。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>23 2.5.3均匀的平均fl OW。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>24 24 2.6在边界层中的波传播。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>25 2.6.1跨度波数。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。。。。。。。。。。。。。。。。。。。。。26 2.6.2一些有用的公式。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。27 2.6.3波幅度。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。28
我们考虑了经受连贯驱动器的非线性损耗谐振器的光子晶格,该系统记得其拓扑阶段。最初,该系统在拓扑上是微不足道的。应用额外的相干脉冲后,强度会增加,从而调节系统中的耦合,然后诱导拓扑相变。但是,当脉冲的效果消失时,系统不会返回到微不足道的阶段。相反,它记住拓扑阶段并保持其在脉冲应用过程中获得的拓扑。脉冲可以用作触发拓扑模式的放大的开关。我们进一步表明,扩增发生在不同的频率以及与脉冲的位置不同的位置,表明频率转换和强度转移。我们的工作对于触发主动拓扑光子设备的不同功能很有用。
摘要 — 本信介绍了一种用于多通道宽带神经信号记录的能量和面积高效的交流耦合前端。所提出的单元使用基于反相器的电容耦合低噪声放大器调节局部场和动作电位,然后是每通道 10-b 异步 SAR ADC。单位长度电容器的调整可最大限度地减少 ADC 面积并放宽放大器增益,从而可以集成小型耦合电容器。与最先进的产品相比,65 纳米 CMOS 原型的面积缩小了 4 倍,能量面积效率提高了 3 倍,占位面积为 164 µ m × 40 µ m,能量面积性能系数为 0.78 mm 2 × fJ/conv-step。在 1 Hz 至 10 kHz 带宽内测得的 0.65 µ W 功耗和 3.1 µ V rms 输入参考噪声对应的噪声效率因子为 0.97。
量子计算(特别是可扩展量子计算和纠错)的一个关键要求是快速且高保真度的量子比特读出。对于基于半导体的量子比特,局部低功率信号放大的一个限制因素是电荷传感器的输出摆幅。我们展示了 GaAs 和 Si 非对称传感点 (ASD),它们专门设计用于提供比传统电荷传感点大得多的响应。我们的 ASD 设计具有与传感器点强烈分离的漏极储液器,这减轻了传统传感器中的负反馈效应。这导致输出摆幅增强 3 mV,这比我们设备传统状态下的响应高出 10 倍以上。增强的输出信号为在量子比特附近使用超低功率读出放大器铺平了道路。
我们通过实验证明,使用幺正压缩协议可以增强(放大)涉及量子谐振子的一大类相互作用。虽然我们的演示使用了单个被捕获的 25 Mg + 离子的运动状态和内部状态,但该方案通常适用于仅涉及单个谐振子的汉密尔顿量以及将振荡器与另一个量子自由度(如量子比特)耦合的汉密尔顿量,涵盖了量子信息和计量应用中大量感兴趣的系统。重要的是,该协议不需要了解要放大的汉密尔顿量的参数,也不需要压缩相互作用与系统动力学其余部分之间有明确的相位关系,这使得它在信号或相互作用的某些方面可能未知或不受控制的情况下非常有用,例如寻找新形式的暗物质。