图 4:(蓝色)脉冲高度分析仪 (PHA) 光谱,来自锆激活 BGO 探测器,位于 PF 轴 0° 处,累积了 7 个系列的拍摄,每个系列 16 次拍摄,每个拍摄的门间隔为 3.0 秒,连续 112 次 PF 拍摄的累计有效时间 = 336 秒。(绿色)实验室背景辐射的 PHA 光谱,有效时间 = 160 分钟 = 9600 秒,但缩小到 336 秒有效时间。在次轴上:(红色)净(背景减去)PHA 光谱,和(黑色)MCNP5 模拟的 BGO 能量光谱,用于 ¦¦¦ 发射的 γ 射线。灰色虚线框表示 SCA 能量窗口。 SCA 能量窗口内每次发射的计数为: 、 、 、 、 、 。 。 。 PHA bin 宽度为 1.93 keV。
β -氧化镓(β -Ga 2 O 3 )的带隙约为4.9 eV [ 1 ],作为一种新兴的超宽带隙半导体,近年来得到了广泛的研究。由于其具有成熟的块体材料制备、优异的Baliga 品质因数和高电子迁移率等优点[ 2 ],β -Ga 2 O 3 被认为是一种很有前途的日盲紫外(UV)光电探测器、气体传感器、紫外透明导体和大功率电子器件的候选材料[ 3 ,4 ]。虽然块体β -Ga 2 O 3 是外延生长高质量β -Ga 2 O 3 薄膜的理想衬底,但其昂贵的成本和较差的热导率仍然阻碍了同质外延的商业化。因此,在低成本、大尺寸衬底上异质外延β -Ga 2 O 3 薄膜仍然具有重要意义。
收稿日期:2017 年 1 月 X 日;修订日期:2017 年 2 月 X 日;接受日期:2017 年 3 月 X 日 摘要 增材制造 (AM) 因其高材料利用率和产品设计灵活性而受到越来越多的关注。WAAM 的特点是能够管理各种金属材料和高沉积速度。然而,它的形状精度低于通过其他 AM 工艺积累的形状精度,并且需要精加工作为后处理。此外,由金属组成的 AM 积累由于反复熔化和快速凝固而具有复杂的热历史。因此,使用 SUS316L 奥氏体不锈钢,其积累的微观结构中会发生树枝状生长。因此,与等粒结构相比,不锈钢的机械性能(例如延展性和屈服强度)是各向异性的。因此,我们在此提出了一种结合线材和电弧增材制造 (WAAM) 和精加工系统的新系统。在该方法中,当熔融金属凝固时,通过旋转工具进行精加工。使用新系统进行实验,以抑制 WAAM 累积产生的各向异性微观结构。作为旋转工具,使用切削工具和摩擦搅拌抛光 (FSB) 工具。进行微观结构观察和 X 射线衍射分析以评估累积的各向异性。使用新系统,可以抑制累积中的枝晶生长。通过将上述同时处理系统应用于 WAAM 沉积的最外层,预计可以通过表面改性提高疲劳强度并简化精加工工艺。 - 关键词:线材和电弧增材制造、定向能量沉积、X 射线衍射分析、精加工工艺、切削、摩擦搅拌抛光
几种Ising型磁性范德华(VDW)材料表现出稳定的磁接地状态。尽管进行了这些清晰的实验演示,但仍然缺乏对它们的磁各向异性的完整理论和微观理解。尤其是,识别其一维(1-D)的有效性限制以定量方式仍未进行研究。在这里,我们首次为原型Ising VDW磁铁FEPS 3进行了磁各向异性的完整映射。将扭矩测量值与其磁模型分析和相对论密度的总能量计算相结合,我们成功地构建了磁各向异性的三维(3-D)映射,以磁性扭矩和能量来构建。结果不仅在定量上证实了易于轴垂直于AB平面,而且还揭示了AB,AC和BC平面内的各向异性。我们的方法可以应用于VDW材料中磁性的详细定量研究。关键字:FEPS 3,扭矩测量,磁各向异性能量,Ising型磁性结构
复杂的铁磁氧化物已被鉴定为自旋电流来源的可能候选材料。在这里,我们在LSAT底物上研究Fer-Romagnetic(LA 2/3 SR 1/3)MNO 3(LSMO)和金属Caruo 3(CRO)的双层,作为用于自旋泵送的模型系统。铁磁共振(FMR)测量结果表明,沿界面上旋转泵送的证据以吉尔伯特阻尼增加的形式增加了CRO。fmr表示CRO的存在修改了LSMO的磁各向异性。通过增加CRO厚度,我们发现平面外各向异性和易于轴在平面内的同时旋转降低,从⟨110⟩到100轴。通过FMR与大量的鱿鱼磁力测定法测量的磁各向异性的演变,并伴随着通过X射线衍射测量的LSMO层中的结构畸变,从而表明磁性偏移变化归因于cro构成的结构变形,这是由CRO归因于LSMO的结构。这些结果表明,尽管LSMO和CRO仍然有希望的候选者,分别用于有效的纯自旋电流生成和检测,但钙钛矿的外延整合会导致其他变化,这在Spintronics应用中必须考虑到。
定向能量沉积 (DED) 是一种新兴技术,可用于修复关键的航空航天部件。研究表明,DED 部件的机械性能在整个零件过程中变化很大,因此很难达到这些应用所需的过程控制水平。使用现场捕获的热数据,计算出冷却速率和熔池尺寸,并将其与 EBSD 捕获的最终晶粒结构关联起来。冷却速率的变化解释了不同加工参数之间以及构建高度的微观结构变化。实施了一种使用累积各向异性因子的新方法,将硬度变化与晶粒结构关联起来。根据 316L 中的线性热输入发现了两种情况,高线性热输入导致部件级别上大量的机械各向异性。热特征和机械性能之间的关系表明,可以通过使用同轴摄像机监测和控制熔池大小来实现对各向异性的严格控制。
摘要。印刷电路板 (PCB) 是环氧树脂浸渍和固化的反编织玻璃纤维 (例如 FR4) 板,层压在薄铜板之间。PCB 的性质本质上是各向异性和不均匀的,但之前的 PCB 模态 FEM 假设了各向同性、各向异性 (横向各向同性和正交各向异性) 材料特性,并显示出与特定场景的测试数据有良好的相关性 [1-3]。本文详细介绍了一项研究计划的一部分,旨在更好地理解如何准确模拟 PCB 的动态行为。分析了材料各向异性的影响的新研究,特别是材料正交平面定义 (𝐸 ௫ 和 𝐸 ௬ ) 对特征频率的影响。使用 Steinberg 完善的理论和其他人的经验数据 [4, 5] 创建、验证和确认了 JEDEC PCB 的模态 FEM。使用参数模态 FEM 检查了 𝐸 ௫ 、𝐸 ௬ 和 𝐸 ௭ 对 PCB 特征频率的相对贡献,分析了材料各向同性和各向异性的作用。还分析了典型 JEDEC PCB 的横向各向同性材料特性的影响。此分析详细说明了准确建模 PCB 特征频率所需的网格密度。结果表明,𝐸 ௭ 增加 100% 只会导致特征频率差异 0.2%,而 𝐸 ௬ 增加 100% 会导致特征频率差异 1.2%。正交各向异性平面定义(交替使用 𝐸 ௫ 和 𝐸 ௬ )对 JEDEC PCB 的影响使特征频率发生了 7.95 % 的偏移。