摘要 积累在植物组织和结构(如腺毛和薄表皮层)表面的化合物被定义为渗出物、外部化合物和浅表化合物。它们表现出重要的保护活性——抗真菌、抗菌、拒食昆虫、杀幼虫、抗疟原虫和防紫外线。评估了从蜡菊花中获得的渗出物对黑麦草种子发芽和初始胚根伸长的抑制活性。该实验在培养皿中体外进行。在水-丙酮混合物(99.5:0.5)中,以 1、3、5、7 和 10 mg/mL 的浓度测定渗出物。用 GC/MS 分析渗出物的化学成分。发现浓度为 5 mg/mL 的渗出液可导致 90% 以上的种子发芽抑制。在相同浓度下,观察到根部生长被完全抑制。分泌物的主要生物活性成分被鉴定为黄酮苷元-柚皮素。本研究首次研究了H. arenarium对种子发芽的抑制活性。
摘要 在胚胎干细胞 (ESC) 中,核心转录因子 (TF) 网络建立了多能性所必需的基因表达程序。为了解决四种关键 TF 之间的相互作用如何促进小鼠 ESC 中的顺式调控,我们分析了两个由 SOX2、POU5F1 (OCT4)、KLF4 和 ESRRB 的结合位点组成的大规模并行报告分析 (MPRA) 文库。合成的顺式调控元件与具有可比结合位点配置的基因组序列之间的比较揭示了调控语法的某些方面。合成元件的表达受结合位点的数量和排列的影响。这种语法对基因组序列的作用很小,因为基因组序列的相对活性最好通过预测的结合位点占用率来解释,而与结合位点身份和定位无关。我们的结果表明,转录因子结合位点 (TFBS) 的影响受位点顺序和方向的影响,但在基因组中,TF 的整体占用率是活性的主要决定因素。
摘要:Waixenicin A是八角形肌s骨Edmondsoni的异干二萜,是TRPM7离子通道的选择性,有效的抑制剂。研究Waixenicin A的结构 - 活性关系(SAR),我们从S. Edmondsoni分离并分离了相关的二萜。除了已知的二烯酸A(1)和B(2)外,我们还纯化了六种异乙烷二萜,7 s,8 s-8 s-Epoxywaixenicins a(3)和B(4),12-二酰基韦二烯酸A(5),Waixenicin E(Waixenicin e(6),Waixenicin f(7)和20-8),以及20-8)。我们通过NMR和MS分析阐明了3-8的结构。化合物1、2、3、4和6在基于细胞的测定中抑制TRPM7活性,而5、7和8则无活性。出现了一个初步的SAR,表明对九元环的改变并没有减少活性,而12-乙酰毒性组与二氢吡喃结合使用似乎是TRPM7抑制作用所必需的。通过形成共轭氧化核离子中间体,提出生物活性化合物为潜在电物质。全细胞斑块钳实验表明,怀森辛素A抑制作用是不可逆的,与共价抑制剂一致,并且显示了Waixenicin b(2)的纳摩尔效力。1、3、7和8的构象分析(DFT)揭示了对Waixenicin A和同类物的构象的见解,并提供了有关拟议的药效团稳定的信息。
我们研究的目的是检验以下假设:再生胰岛衍生的蛋白3α(Reg3α)的给药,一种被描述为具有保护氧化应激和抗炎性活性的蛋白质,可以参与葡萄糖稳态的控制,并可能是对2型二世纪型糖尿病治疗的新目标。到此为止,重组人Reg3α蛋白在喂养高脂饮食的胰岛素耐药小鼠中施用一个月。我们进行了葡萄糖和胰岛素耐受性测试,测定了血浆中的循环趋化因子,并测量了胰岛素敏感组织中的葡萄糖摄取。我们证明了在ALF-5755处理的小鼠与对照中口服葡萄糖耐量测试期间胰岛素敏感性的提高,并降低了促炎性细胞因子C-X-C-C-X-C型趋化因子配体5(CXCL5)。我们还证明了骨骼肌中葡萄糖摄取的增加。最后,使用人和小鼠肌肉活检的相关研究显示肌内reg3αmRNA表达(或其鼠同工型Reg3γ)与胰岛素抵抗之间的负相关。因此,我们已经建立了概念证明,即reg3α可以通过通过骨骼肌效应提高胰岛素敏感性来治疗T2D的新分子。
摘要●目的:探索肠道菌群和代谢物与糖尿病性视网膜病(DR)的进展的相关性,并提供了一种新的策略来阐明DR的病理机制。 ●方法:来自32种2型糖尿病患者的粪便样品(PDR),23例,非增生性视网膜病(NPDR),27例无视网膜病变(DM),29个,与性别,年龄和BMI-I-AND和BMI-I-I-GEMI-I-I-GEMI-I-GEMI-I-GENE-affer-mi-i-I-HEALTY对照对照(29 HC”(29 HC)分析了16s cene cene cene cene cene。来自PDR,DM和HC组的60个粪便样品通过未靶向的代谢组学测定。粪便代谢产物。。●结果:发现了2个微生物组和12个代谢产物的簇,并伴有DR的严重程度,并且发现了疾病进展与PDR相关的微生物组和代谢产物的紧密相关性。是特定的,肠道微生物群的结构在四组中有所不同。与DM和HC组相比,PDR和NPDR组的肠道微生物群的多样性和丰富性在PDR和NPDR组中明显低。富含PDR组的微生物组簇,包括假单胞菌,ruminococcaceae-ucg-002,ruminococcaceae-ucg-005,christensenellaceae-r-7,
为了生成基因编辑的无转基因大豆植物,设计了多个 sgRNA(单向导 RNA),并将其用于靶向 GmNF-YC4-1(Glyma.06G169600)启动子中的不同区域。使用农杆菌介导的转化将 Cas9 和多达六个向导 RNA 表达盒引入稳定转化的大豆植物中。使用 PacBio DNA 序列分析检测了 GmNF-YC4 启动子中含有缺失的 T0 植物。使用 PCR 分析和 DNA 测序检查了由 T0 植物自花授粉产生的 T1、T2 和 T3 植物,以识别缺失纯合且未继承含有 T-DNA 的基因编辑机制的品系。通过定量 PCR 测定 T-DNA 的存在与否以确定拷贝数。已经(或将)使用至少六对 PCR 引物对在拷贝数测定中未显示 T-DNA 拷贝的大豆品系进行 T-DNA 存在与否的检查,以调查大豆基因组中是否存在 T-DNA 载体序列。如果发现基因组中存在 T-DNA 载体序列,则将大豆品系与未转化大豆进行杂交,并选择包含预期的 NF-YC4 启动子缺失且不包含任何 T-DNA 载体序列的后代。
摘要 大脑两侧的差异化专业化促进了信息的并行处理,这在很多动物中都有所体现。据报道,侧化程度更高的动物(表现为持续优先使用肢体)通常表现出优越的认知能力和其他行为优势。我们检测了 135 只幼年雉鸡 (Phasianus colchicus) 的侧化程度,通过它们在自发踏步任务中的足部特征来判断,并将这一指标与个体在 3 项视觉或空间学习和记忆检测中的表现联系起来。我们没有发现任何证据表明明显的足部特征会提高任何任务的认知能力。我们也没有发现任何证据表明中等的足部特征与更好的认知表现有关。这种缺乏关联令人惊讶,因为之前的研究表明,雉鸡在种群中略微偏向右足,而当被放归野外时,足部特征更高的个体更容易死亡。极端侧化受到限制的原因之一是,它会导致认知表现较差,或者最佳认知表现与某种中等程度的侧化有关。这种稳定的选择可以解释在大多数已研究的非人类物种中看到的中等侧化模式。然而,我们在这项研究中没有发现任何证据来支持这种解释。
摘要背景:妊娠糖尿病(GDM)是一种严重的健康状况,这些健康状况是在妊娠发作时经历胰岛素抵抗和葡萄糖不耐受的女性。妊娠母亲和怀孕时胎儿不断增长的多个危险因素,甚至可能延长产后。AIM:Berberine是一种以抗炎和有效的抗糖尿病活性而闻名的天然植物提取物,用于临床抑制妊娠糖尿病涉及的危险因素。材料和方法:将雌性Wistar大鼠用作本研究的模型。链蛋白酶用于在女性大鼠模型中诱导糖尿病。berberine施用对测试动物的施用,并定期分析体重,胎儿 - 置换体重和指数,胎儿血糖(FBG),血清晚期糖基化终终产物(AGES)和抗氧化剂酶浓度。生化参数,脂质和促炎性细胞因子水平以研究berberine的影响。结果:在研究后,观察到小ber碱通过靶向多个标准(包括上述炎症介体)来抑制葡萄糖不耐症和胰岛素抵抗的活性显着。结论:从这项研究中可以明显看出,ber碱可以用作治疗妊娠糖尿病的治疗剂。
由严重急性呼吸综合征冠状病毒 2 (SARS- CoV-2) 引起的 2019 冠状病毒病 (COVID-19) 大流行是一场全球危机。迫切需要具有高效性、易获得性且不会产生耐药性的临床候选药物。尽管对已临床批准药物的重新利用进行了筛选,提供了多种被证明在细胞培养中对抗 SARS-CoV-2 感染的有效药物,但很少有被证实的体内抗病毒候选药物。在本研究中,从 2,580 种 FDA 批准的小分子药物中鉴定出 94 种在 Vero E6 细胞中对 SARS-CoV-2 显示高抗病毒活性的化合物。其中,筛选出了 24 种低细胞毒性的化合物,其中 17 种化合物还有效抑制了转导人 ACE2 的 HeLa 细胞中的 SARS-CoV-2 感染。六种化合物扰乱了 SARS-CoV-2 生命周期的多个过程。使用感染 SARS-CoV-2 的叙利亚仓鼠体内测定了它们的预防效果。七种化合物减少了感染原始毒株和 D614G 变体的仓鼠的体重减轻并促进了体重恢复。除顺式阿曲库铵外,六种化合物在感染后 4 天测定时降低了仓鼠肺部病毒载量以及 IL-6 和 TNF-α mRNA。特别是,舍曲林、盐霉素和吉利替尼在体内表现出与瑞德西韦相似的保护作用,并且在体外 SARS-CoV-2 连续传代 10 次后未诱导抗病毒药物耐药性,表明其有望用于 COVID-19 治疗。
引言 寻找在治疗和管理疾病方面具有化学治疗效果的药物的过程称为药物发现。研究人员通常通过对疾病的病理生理学的新见解来发现新药,这使他们能够制造出可以抵消或阻止疾病后果的药物。在药物开发过程中,候选药物被识别、合成、表征、筛选和治疗效果分析。在临床试验之后,如果分子在这些研究中产生了有利的结果,它将开始药物开发过程。由于研发和临床试验费用巨大,因此寻找和开发新药的过程成本高昂。一种新型药物分子必须在大约 12 到 15 年的时间内开发出来,从发现开始到商业化用于患者治疗结束。开发和研究的典型价格 每种有效药物的估计成本在 9 亿美元到 20 亿美元之间。这一金额解释了数千次失败的尝试:最终,每 5,000 至 10,000 种进入研发渠道的化合物中,只有一种获得批准。这些数字令人难以置信,但快速回顾一下研发过程,有助于解释为什么这么多化合物无法找到市场,以及为什么需要如此大量的时间和资源
