最近,受量子退火的启发,许多专门用于无约束二元二次规划问题的求解器已经开发出来。为了进一步改进和应用这些求解器,明确它们对不同类型问题的性能差异非常重要。在本研究中,对四种二次无约束二元优化问题求解器的性能进行了基准测试,即 D-Wave 混合求解器服务 (HSS)、东芝模拟分叉机 (SBM)、富士通数字退火器 (DA) 和个人计算机上的模拟退火。用于基准测试的问题是 MQLib 中的真实问题实例、随机不全相等 3-SAT (NAE 3-SAT) 的 SAT-UNSAT 相变点实例以及 Ising 自旋玻璃 Sherrington-Kirkpatrick (SK) 模型。对于 MQLib 实例,HSS 性能排名第一;对于 NAE 3-SAT,DA 性能排名第一;对于 SK 模型,SBM 性能排名第一。这些结果可能有助于理解这些求解器的优点和缺点。
抽象的疟疾寄生虫在很大程度上依赖于快速,高保真蛋白的合成来感染和复制人类红细胞,使翻译成为新抗疟药的有吸引力的靶标。在这里,我们已经确定了来自冰冻的恶性疟原虫感染的人类红细胞的13个构象和组成状态的PF 80S核糖体的原位结构。我们观察到八个主动翻译中间体,使我们能够定义天然疟疾翻译延伸周期,令人惊讶的是,在循环的解码阶段中,该循环呈分叉,以前尚未描述。在存在疟疾特异性翻译抑制剂的情况下,对这些状态中核糖体分布的扰动的检查表明,抑制剂会阻碍PF EEF2和PFEEF1α与核糖体相互作用。我们将原位冷冻数据与蛋白质组学和超微结构数据集成在一起,以更深入地了解疟疾翻译,这将为新疗法的开发提供信息。
在非线性物理系统中识别逃避直接实验检测的隐藏状态很重要,因为干扰和噪音可以将系统置于隐藏状态,并带来有害后果。我们研究了一个空腔岩石系统,其主要物理学是光子和镁kerr效应。在数值实验中扫描分叉参数(如在实际实验中所做的那样)导致具有两个不同稳定稳态状态的磁滞回路,但是分析计算在环路中赋予了第三个折叠的稳态“隐藏”,这导致了隐藏可粘性的现象。我们提出了一种实验可行的控制方法,将系统驱动到折叠的隐藏状态中。我们通过三元腔镁质系统和基因调节网络证明了这种隐藏的多稳定性实际上很普遍。我们的发现阐明了非线性物理系统中隐藏的动力状态,这些状态不是直接观察到的,但可以在应用中带来挑战和机遇。
大脑皮层是一个复杂的神经生物学系统,具有许多相互作用的区域。这些区域如何协同工作以促进灵活的行为和认知,越来越成为严谨研究的对象。在这里,我回顾了最近关于多区域皮层运作方式的实验和理论工作。这些研究揭示了大脑皮层区域间连接的几个一般原则、皮层区域间生物特性的低维宏观梯度以及信息处理的时间尺度层次。理论工作表明,皮层层次结构中前馈和反馈通路上的差异兴奋和抑制具有可测试的预测。此外,分布式工作记忆和简单决策的建模产生了一种新的数学概念,称为空间分叉,它可能解释了不同的皮层区域如何能够在模块化组织的大脑中促进各自的功能(例如,感觉编码与执行控制)。
•刚性多体流体结构相互作用(RMB-FSI),系统的多物理系统(SOS),计算多机2D/3D动态系统,集团参数建模以及2D/3D机械设备设计,并应用于浮动的离岸风力涡轮机(FOWT),无效的轴线(FOWT) (WEC)。•非线性动态,分叉,混乱理论,线性/非线性谨慎/连续系统中的机械振动,应用于振动吸收,非线性能量水槽,旋转系统中的能量收集,MEMS和NEMS共振器共振器的设计,以及旋转机器的健康监测和损坏。•非线性自适应/鲁棒控制系统设计,数字控制,机器人技术,机器人和自动化,并在自主系统下应用,在启动系统,四轮驱动器,腿部机器人,生物启发的机器人和康复机器人之下。•耦合的微分方程的非线性时间周期系统的扰动分析,并应用于自激发和参数激发的系统,陀螺仪系统,非自我学系统以及暴露于非守护力的弹性结构。奖励和荣誉
可以很容易地想象,在照顾多发性疾病或左主冠状动脉疾病(CAD)的患者时做出的最重要的决定是在冠状动脉导管实验室中做出的。在那里,会发生关键决策,包括确定最佳血运重建策略和血运重建时间的确定性,并适当关注解剖学综合性和疾病负担。实施最佳证据和血运重建指南,除了确定双重抗血小板疗法的持续时间外,还要纳入成像和适当的分叉策略,这对于确保最佳的长期结果至关重要。这些复杂的患者需要训练有素的多学科高危心脏团队。但是其他哪些因素严重影响长期死亡率?在当前的欧洲干预期间,HARA等人1列出了来自语法的数据扩展生存研究,评估了预性外部生物学标志物对10年病情的影响。在这项研究中,研究人员发现,我们为导管实验室和操作室以外的患者所做的事情极大地影响了长期死亡率。他们报告说,在语法患者中,10年死亡率的最大预测因子不是生物标志物,而是缺乏他汀类药物的使用。
自激振荡(系统在非周期性刺激下的周期性变化)对于在软机器人技术中创建低维护自主设备至关重要。宏观尺寸的软复合材料通常掺杂有等离子体纳米粒子,以增强能量耗散并产生周期性响应。然而,虽然目前尚不清楚光子纳米晶体的分散体是否可以作为软致动器对光作出反应,但对纳米胶体在液体中自激振荡的动态分析也缺乏。这项研究提出了一种用于照明胶体系统的新型自激振荡模型。它预测热等离子体纳米粒子的表面温度及其簇的数密度在从次声到声学值的频率范围内共同振荡。对自发聚集的金纳米棒的新实验,其中光热效应在宏观尺度上改变了光(刺激)与分散系统的相互作用,有力地支持了该理论。这些发现拓展了目前对自激振荡现象的认识,并预测胶体状态的物质将成为容纳光驱动机械的合适载体。从广义上讲,我们观察到一种复杂的系统行为,从周期性解(霍普夫-庞加莱-安德罗诺夫分岔)到由纳米粒子相互作用驱动的新动态吸引子,将热等离子体与非线性和混沌联系起来。
高静水压力(HHP)调节的基因表达是微生物适应深海环境的最常见策略之一。以前我们表明,HHP诱导的三甲胺N-氧化物(TMAO)还原酶提高了深海菌株弧菌Fluvialis Qy27的压力耐受性。在这里,我们研究了HHP响应性调节TMAO还原酶Tora的分子机制。通过构建Torr和Tors缺失突变体,我们证明了两个组件调节剂Torr和传感器TOR是托拉的HHP响应性调节的原因。与已知的HHP响应性调节系统不同,HHP的丰度不受HHP的影响。在保守的磷酸化位点改变的δTOR突变体的互补表明,这三个位点对于底物诱导的调节是必不可少的,但仅位于替代递质结构域中的组氨酸与压力响应性调节有关。 总的来说,我们证明了HHP诱导TMAO还原酶是通过Torrs系统介导的,并提出了通过底物诱导的压力响应调节中信号转导的分叉。 这项工作提供了对压力调节基因表达的新知识,并将促进对微生物对深海HHP环境的适应性的理解。互补表明,这三个位点对于底物诱导的调节是必不可少的,但仅位于替代递质结构域中的组氨酸与压力响应性调节有关。总的来说,我们证明了HHP诱导TMAO还原酶是通过Torrs系统介导的,并提出了通过底物诱导的压力响应调节中信号转导的分叉。这项工作提供了对压力调节基因表达的新知识,并将促进对微生物对深海HHP环境的适应性的理解。
实现具有吸引人的性能指标和与硅光子平台兼容的紧凑型芯片脉冲激光器是当代纳米光子学的重要目标。在这里,是否可以将2D材料用作增益和饱和吸收介质来实现紧凑型综合Q-用被动Q开关的纳米光激光器的基本问题,并通过检查广泛的2D材料家族来提出和解决。通过开发涉及半古典速率方程的时间耦合模式理论框架来进行研究,该框架能够通过2D材料严格处理增益和可饱和的吸收,从而可以执行稳定性和分叉分析涵盖广泛的参数空间。可以通过不同的2D材料获得脉冲训练指标(重复速率,脉冲宽度,峰值功率)的范围。我们的工作表明,使用2D材料增强的纳米光腔可以使被动q交换,重复速率不得超过50 GHz,短脉冲持续时间降至几个picseconds,而峰值功率超过了几毫升。如此有吸引力的指标,以及2D材料的超薄性质以及电气调整其性质的能力,证明了提出的紧凑和灵活的集成激光源的平台的潜力。
不同的横断面和临床研究研究调查,在没有HBV感染的情况下,慢性HBV感染了COVID-19感染的慢性HBV感染与COVID-19的感染将更复杂的肝感染。这项研究的主要目的是研究使用隔室建模方法对HBV和COVID-19的共同流动传播的四个时间依赖控制策略的最佳影响。该模型的定性分析研究了模型解决方案非负和界限,通过采用下一代操作员方法来计算所有模型有效的复制数量,计算了所有模型无疾病平衡点(S)和地方性平衡点(S),并证明了它们的局部稳定性,并证明了它们的局部稳定性,表明了其现象的循环。通过应用Pontryagin的最大原理,该研究通过纳入四个依赖性控制变量来重新形成并分析了共流行模型的最佳控制问题。该研究还进行了数值模拟,以验证模型定性结果并研究所提出的最佳控制策略的最佳影响。这项研究的主要发现表明,同时实施保护,Covid-19疫苗和治疗策略是解决社区中HBV和COVID-19的共同流体扩散的最有效的最佳控制策略。