13。报告类型和期间涵盖的最终报告(2019年7月 - 4月2021)14。赞助代理代码15。补充注释16。摘要在美国中西部州的中西部州略微固结的冰川耕种和风化的页岩通常在施工后表现出很大的强度退化。这种降低的强度通常会导致路边依赖时间的斜率故障。这项研究研究了应用基于生物聚合物的土壤修饰技术来减轻这些土壤的强度降低现象的可能性。在这项研究中,通过实验室测试评估了几种不同的生物聚合物,选择了两种生物聚合物进行广泛的风化测试,然后将较高表现的生物聚合物Xanthan应用于内布拉斯加州Verdigre的测试坡度,并用重型仪器进行。以下是结果的摘要。分别混合0.5%,1.5%和2.5%的黄原胶,从绿色的天空它们的不受欢迎的实验室剪切强度提高了20%,30%和40%。另一方面,在8个湿冻冻干干燥的周期中,风化的天鹅绒的风化剪切强度仍保留了未经治疗的未知无关的牙龈的83%。对于冰川耕种也获得了类似的结果,表明基于黄金的聚合方法可以用作一种新的生态友好方法,以增强中西部州风化的页岩和冰川耕种的强度。但是,需要进一步监视以充分验证发现。迄今为止,基于压力表和叶片剪切测试结果,施用的黄曼处理的土壤与实验室测试结果相似。
塑料在食品包装中的主要要求被确定为足够的机械性能,屏障性能,热性能和加工性。根据为该项目生产的两种不同的PHBV,铸造的混合膜的总体状况分析了PHBV到包装溶液中的加工性。生物聚合物PLA和PBS是混合材料,因为PHBV作为独立材料的性质不足。这两部电影都带有质量的可见问题,指出了试点生产过程参数或材料混合兼容性的问题。现有文献强调了PHBV与PLA和PBS之间的混乱问题。
大多数当前研究的主要重点是开发可生物降解的包装材料。如果塑料本身可以生物降解,那将是多么美妙?到目前为止,研究已经发掘了一些可以生物降解的聚合物。聚合物是任何塑料材料的结构和功能单位。因此,这些是可生物降解的,并且解决了很大一部分问题[1]。这些可生物降解的聚合物称为“生物聚合物” [2]。目前,明胶是最受欢迎的生物聚合物,并且已被广泛使用[3]。但是,明胶是从动物骨头中提取的,最近因引起健康问题而引起了批评。此外,不食用动物产品的人通常不舒服地购买包装在动物基本材料中的产品。
多糖是一类生物聚合物,在生物体中被广泛用于从结构增强到能量储存等各种用途。在自然界中发现的众多类型的多糖中,纤维素是最丰富的,因为它存在于每种植物中。纤维素通常在细胞壁内组织成纳米级结晶原纤维,以赋予植物组织结构完整性。然而,在一些物种中,这种原纤维被组织成螺旋纳米结构,其周期性与可见光相当(即在 250 – 450 nm 范围内),从而产生结构着色。因此,当以生物灵感作为设计原则时,很明显螺旋纤维素结构是开发可持续光子材料的一种有前途的方法。
作为本综述的一部分,介绍了有关骨骼微量营养素选择的文献数据的全面综述。分析表明,纳米级骨营养微量营养素(CA,MG,Zn,MN和CU)是有前途的材料,具有广泛的实际应用。考虑了骨质微量营养素的每种碳酸盐的合成的主要方法,以及用生物聚合物稳定它们的方法。审查还提出了纳米级金属碳酸盐的应用。应用的一个重要领域是药物。特别是,正在考虑使用纳米级材料作为具有良好治疗作用和靶向药物递送的药物。审查还确定了该领域进一步研发的问题和机会,强调需要优化合成参数,并探索使用生物聚合物稳定骨骨营养微量营养素的新方法。
本综述全面回顾了关于骨向性微量营养素选择的文献数据。分析表明,纳米级骨向性微量营养素(碳酸盐 Ca、Mg、Zn、Mn 和 Cu)是有广泛实际应用前景的材料。本文介绍了每种骨向性微量营养素碳酸盐的主要合成方法,以及用生物聚合物稳定它们的方法。本综述还介绍了纳米级金属碳酸盐的应用。一个重要的应用领域是医学。特别是,人们正在考虑将纳米级材料用作具有经过验证的治疗效果和靶向药物输送的药物。本综述还确定了该领域进一步研究和开发的问题和机会,强调需要优化合成参数,并探索用生物聚合物稳定骨向性微量营养素的新方法。
● 生物物理化学基础研究 ● 分子动力学模拟 ● 机械化学 ● 软物质的平衡和非平衡统计力学 ● 生物聚合物/大分子的结构和动力学 ● 材料化学和非均相催化 ● 有机大分子——材料和生物医学中的设计、合成和应用 ● 离散超分子集合的自组装形成及其功能应用研究 ● 用于选择性吸附和封存污染物/危险物质的工程介孔聚合物 ● 用于生物医药的功能纳米结构的制造 ● 用于靶向治疗的新型分子实体的设计、合成和开发 ● 药物发现中的生物正交化学 ● 计算催化和小分子活化 ● 新型有机和过渡金属催化体系和人工金属酶的计算机设计 ● 用于研究生物分子金属相互作用的荧光光谱。
生物塑料的水分含量是指生产过程后的生物塑料的质量百分比。随着使用增塑剂的使用而增加了水分含量。来自图3,为合成的最大甘油添加最大甘油的生物塑料的水分含量最高(49%),并且添加氯仿百分比最高的生物塑料具有最低的水分含量(30%)。当两者之间的比率为1:1时,中间的水分含量位于中间。先前的研究中,香蕉皮被用于制作基于淀粉的生物聚合物(4)表明,基于甘油的生物塑料具有较高的水分含量值。这是因为甘油是羟基的一部分,该羟基很容易与水分子形成氢键,并且对它们具有很大的亲和力。
核糖体将核酸中编码的遗传信息转化为蛋白质。即使将氨基酸逐一组装在一起,这种解码过程也需要mRNA上的三核苷酸密码子与同源氨基酰基-TRNA的相应反密码子之间的watson-Crick相互作用。遗传密码是退化的,由于序列柔韧性主要在第三核苷酸的水平上,因此由一个或多个TRNA识别。1,2另一方面,核酸的合成是由聚合酶介导的,并通过在生长链上组装单个单字母核苷酸来进行进行。由于机制的差异,这些基本生物聚合物的合成涉及的错误率大大差异从非常低的DNA复制到更容易出错的DNA转录到mRNA中,以及将mRNA转换为蛋白质的较小的忠诚度(分别为〜10 -8,〜10 -5,〜10 -5,〜10 -5,〜10 -10 -4,误差率将mRNA转换为蛋白质。3,4
Adrian 的研究兴趣广泛,涉及聚合物工程的不同方面,例如药物聚合物应用、生物聚合物、回收和纳米复合材料。2010 年,他与工程和生命科学领域的同事共同创立了制药工程科学中心。Adrian 参与了许多大型研究项目,包括目前担任中英橡胶回收联合项目负责人,以及之前获得 EPSRC 资助的石墨烯纳米复合材料、药物共晶体、软组织固定医疗设备和聚合物挤出热优化项目。其他项目包括与阿斯利康、CRP 和 Kestrel 的知识转移伙伴关系,以及与聚合物药物释放有关的英国-印度合作。Adrian 指导了 17 名博士生,并在国际领先期刊上发表了 90 多篇论文。
