图1Q。SuberL.中的体细胞胚发生诱导的初始外观,SE过程的主要阶段及其细胞表征。(a)未成熟的二聚胚胎。(b)从未成熟的二聚胚胎中出现的胚胎肿块。(c)心形胚胎。(d)鱼雷胚胎。(e)早期共叶胚胎。(f)成熟的共叶胚。(g-j; g'-j')甲苯胺蓝色截面的显微照片,用于一般结构可视化。(g-j)未成熟的二聚胚胎(g),前育质量质量(H),心形胚胎(I)和成熟的子叶叶叶牛胚胚(J)的全景。(g'-j')在(g-j)平方表示的代表区域的更高放大倍率上的细节。(g')细胞中未成熟的二聚胚胎,在SE诱导之前,具有高度空泡的细胞和小核。(H 0)PEM显示外围胚胎细胞簇。(i 0)在心形胚胎中发展表皮。(J')具有棱柱细胞的子叶胚胎的表皮。bars表示:a = 1 cm; C,E,G,J =500μm; B =250μm; d = 1 mm; F = 3毫米; h,i =100μm; g'=20μm; J'=20μm。
牲畜和植物育种对可持续农业至关重要(Scho and Simianer 2015),并且更适合于特定环境或市场需求(Qaim 2020)。最近,基因组数据和先进统计方法的可用性彻底改变了育种计划(Kim等人2020)。值得注意的是,基因组选择使育种者可以根据基因构成来预测个体的表现,避免昂贵的表型(Meuwissen等人。2001,Crossa等。 2017)。 这些新的方法解锁了繁殖方案的各种设计可能性,因此很难优化它们。 此外,一个单个繁殖周期可能需要多年,在此过程中涉及许多设计选择。 因此,对使用模拟优化育种计划的兴趣越来越大。 在R中实现了现有的模拟十字架工具(Broman等人 2003,Mohammadi等。 2015,Gaynor等。 2020,Pook等。 2020)或朱莉娅(Chen等人 2022)。 尽管它们提供了广泛的功能,但它们无法利用高性能计算机中的并行性,这些计算机可能是针对大型且复杂的繁殖方案的必要性。 例如,模拟十个有十个春季的人的全脚架十字架会导致450个后代,而20个人的类似拨盘会产生1900个后代。 随着这种快速扩展,模拟与成千上万个人的育种计划中的完整拨号线可能是不可行的;因此,需要开发可以加快模拟的工具。2001,Crossa等。2017)。这些新的方法解锁了繁殖方案的各种设计可能性,因此很难优化它们。此外,一个单个繁殖周期可能需要多年,在此过程中涉及许多设计选择。因此,对使用模拟优化育种计划的兴趣越来越大。在R中实现了现有的模拟十字架工具(Broman等人2003,Mohammadi等。 2015,Gaynor等。 2020,Pook等。 2020)或朱莉娅(Chen等人 2022)。 尽管它们提供了广泛的功能,但它们无法利用高性能计算机中的并行性,这些计算机可能是针对大型且复杂的繁殖方案的必要性。 例如,模拟十个有十个春季的人的全脚架十字架会导致450个后代,而20个人的类似拨盘会产生1900个后代。 随着这种快速扩展,模拟与成千上万个人的育种计划中的完整拨号线可能是不可行的;因此,需要开发可以加快模拟的工具。2003,Mohammadi等。2015,Gaynor等。 2020,Pook等。 2020)或朱莉娅(Chen等人 2022)。 尽管它们提供了广泛的功能,但它们无法利用高性能计算机中的并行性,这些计算机可能是针对大型且复杂的繁殖方案的必要性。 例如,模拟十个有十个春季的人的全脚架十字架会导致450个后代,而20个人的类似拨盘会产生1900个后代。 随着这种快速扩展,模拟与成千上万个人的育种计划中的完整拨号线可能是不可行的;因此,需要开发可以加快模拟的工具。2015,Gaynor等。2020,Pook等。2020)或朱莉娅(Chen等人2022)。尽管它们提供了广泛的功能,但它们无法利用高性能计算机中的并行性,这些计算机可能是针对大型且复杂的繁殖方案的必要性。例如,模拟十个有十个春季的人的全脚架十字架会导致450个后代,而20个人的类似拨盘会产生1900个后代。随着这种快速扩展,模拟与成千上万个人的育种计划中的完整拨号线可能是不可行的;因此,需要开发可以加快模拟的工具。为此目的最有吸引力的语言是Python。Python是数值计算和数据科学最常用的编程语言之一,许多库可用于优化和机器学习(Pedregosa等人。2011,Bradbury等。2011,Bradbury等。
气候变化的多方面性质正在增加选择有弹性的葡萄藤品种或产生新的,变形品种的紧迫性,以承受许多新的挑战性条件。传统繁殖方法的限制速度阻碍了这一目标的实现,这需要数十年才能带来新的选择。另一方面,标记辅助育种在一个或几个基因控制的特征方面有用,对表型具有很大的影响,但其效率仍然受到许多基因座控制的复杂性状的限制。在这些前提下,创新的策略正在出现,可以帮助选择,利用Vitis属内部的遗传多样性的整体。通过适应和开拓性转化方案的遗传物质的来源也可以作为遗传物质的来源,可以作为遗传物质的来源,这些转化方案将自己作为在葡萄藤等顽固物种(例如葡萄剂)上的未来应用的有希望的工具。基因组编辑与这两种策略相交,这不仅是以相对较快的方式获得重点变化的替代方案,而且还通过支持对其他方法开发的新基因型的细胞调整。在此处介绍了有关可用遗传资源和使用创新技术在选择中使用创新技术的可能性的审查,以支持生产气候 - 玛丽特葡萄藤基因型。
基因组编辑技术正被用于改良植物育种,到 2050 年,这可能会持续增加粮食产量。由于监管较为宽松和广泛接受,通过基因组编辑实现的产品正变得越来越为人所知。在目前的耕作方式下,世界人口和粮食供应永远不会按比例增加。全球变暖和气候变化极大地影响了植物和粮食生产的发展。因此,将这些影响降至最低对于可持续的农业生产至关重要。由于农业实践的复杂化和对非生物胁迫反应机制的更好理解,作物对非生物胁迫的适应能力正在增强。传统和分子育种技术都已用于创造可行的作物类型,这两个过程都很耗时。最近,植物育种者对使用成簇的规律间隔的短回文重复序列 (CRISPR/Cas9) 进行基因操作的基因组编辑方法表现出了兴趣。为了确保未来粮食供应的安全,必须开发具有所需特性的植物品种。由于基于 CRISPR/CRISPR 相关核酸酶 (Cas9) 系统的基因组编辑技术革命,植物育种的一个全新时代已经开启。所有植物都可以使用 Cas9 和单向导 RNA (sgRNA) 有效地靶向特定基因或位点组。因此,与传统育种方法相比,CRISPR/Cas9 可以节省时间和劳动力。使用 CRISPR 和 Cas9 系统是一种简单、快速且有效的直接改变细胞中基因序列的方法。CRISPR-Cas9 系统是从最早已知的细菌免疫系统的组成部分发展而来的,它允许在各种细胞/RNA 序列中进行有针对性的基因断裂和基因编辑,以引导 CRISPR-Cas9 系统中的内切酶切割特异性。通过改变向导 RNA (gRNA) 序列并将其与 Cas9 内切酶一起递送到靶细胞,几乎可以对任何基因组位点进行编辑。我们总结了最近的 CRISPR/Cas9 植物研究成果,研究了在植物育种中的潜在应用,并对 2050 年之前可能出现的突破和粮食安全方法做出了预测。
DNA 测序技术的进步使得对数千个个体的全基因组进行测序成为可能,并为每个个体提供数百万个单核苷酸多态性 (SNP)。这些数据与精确和高通量的表型分析相结合,使全基因组关联研究 (GWAS) 和识别具有复杂遗传结构特征的 SNP 成为可能。识别出的因果 SNP 和估计的等位基因效应随后可用于育种计划中的高级标记辅助选择 (MAS)。但这种 MAS 能否与广泛使用的基因组选择 (GS) 相媲美?这个问题对于冗长的树木育种策略尤其有意义。在这里,我们使用新软件“SNPscan breeder”,模拟了一个简单的树木育种计划,并比较了不同选择标准对遗传增益和近亲繁殖的影响。此外,我们评估了育种种群中个体之间的不同遗传结构和不同亲缘关系水平。有趣的是,除了后代测试外,使用 gBLUP 的 GS 在几乎所有模拟场景下都表现最佳。仅当在大量无亲缘关系的个体(约 10,000 个个体)中估计等位基因效应时,基于 GWAS 结果的 MAS 才优于 GS。值得注意的是,使用 3,000 种极端表型的 GWAS 表现与使用 10,000 种表型一样好。与子代测试和基于 GWAS 的选择相比,GS 增加了近亲繁殖,因此更强烈地降低了遗传多样性。我们讨论了对树木育种计划的实际意义。总之,我们的分析进一步支持了 GS 在林木育种和改良方面的潜力,尽管 MAS 在未来可能会随着测序成本的降低而变得更加重要。
摘要:生物技术的快速发展促进了我们对家畜重要经济性状候选基因生物学功能的认识。基因编辑分子育种极大地改变了家畜育种方式。通过基因编辑和胚胎操作,可以很容易地培育出具有设计的经济性状或抗病性状的品种。随着这一快速发展的进程,基因编辑家畜的安全性评估引起了公众和监管机构的关注。本文综述了基因编辑在家畜生产性能改善、抗病性、生物反应器、动物福利和环境友好性等方面的研究进展,并讨论了基因编辑技术在家畜育种中的局限性和未来发展。
在全球范围内,对动物起源食品的需求正在增加。满足这些需求的方式对环境产生最小的影响需要最先进的技术和技术来提高牛的遗传质量。热应激(HS)尤其是在频率和严重程度增加的情况下影响奶牛。随着未来的气候挑战变得越来越明显,确定对HS耐受性更容易耐受的奶牛对于更好地适应未来环境条件并支持奶牛养殖的可持续性的奶牛群很重要。在全球变暖对奶牛的影响的背景下对HS的遗传学进行研究正在增强,但与热耐热相关的特定基因组区域仍未得到充分记录。OMICS信息,QTL映射,转录组分析和全基因组关联研究(GWAS)的进展已鉴定出与HS耐受性相关的基因组区域和变体。这样的研究可以为对HS的反应提供更深入的见解,并为未来的耐热育种做出重要贡献,这将有助于抵消HS在奶牛中的不利影响。总体而言,人们对鉴定候选基因以及与奶牛的热耐受性相关的遗传变异的比例非常感兴趣,而这一研究领域目前在全球范围内非常活跃。本综述提供了有关奶牛中HS遗传结构的一些著名研究的全面信息,尤其强调了与奶牛中与热耐受性相关的确定候选基因。由于有效的育种计划需要对HS引起的免疫受损和相关的健康并发症的最佳了解,因此HS调节免疫反应的基本机制并使动物对各种健康疾病敏感。此外,还讨论了在维持牛奶生产的同时缓解奶牛中HS并改善其福利的未来繁殖策略。
2023年10月,《作物杂志》将迎来创刊10周年。该杂志由中国作物学会、中国农业科学院作物科学研究所和中国科学出版传媒集团有限公司(科学出版社)主办,由科学出版社和科爱出版集团(由中国科学出版传媒有限公司和爱思唯尔创办)出版发行。《作物杂志》是一份双月刊、国际化、同行评议的研究期刊,内容涵盖作物科学的各个方面,包括作物种质保存、改良和利用、作物遗传育种、作物生理代谢、作物管理实践、作物生态学和生产、植物-微生物相互作用和作物抗性、有益健康和营养增强的植物、谷物化学、作物生物技术和生物数学。目前,该期刊已被国际索引系统 SCIE、Scopus、DOAJ、AGRIS(FAO)、CAB Abstracts、食品科学技术文摘、日本科学技术振兴会、中国科学引文数据库、EBSCO Essentials、USDA-PubAg 和 Cabells Journalytics 收录。《作物期刊》得到了全球作物科学界的支持。目前,期刊由来自 16 个国家的 116 位专家组成的编辑委员会负责。在过去 10 年中,超过 1500 位来自世界各地的专家为该期刊提供匿名评审。每年发表的文章数量从 46 篇(2014 年)增加到 190 篇(预计 2023 年)(图 1)。贡献文章最多的三个机构(不包括中国机构)是美国农业部 - 农业研究服务局(USDA- ARS)、国际玉米和小麦改良中心(CIMMYT)和印度农业研究理事会(ICAR)。在过去的 10 年中,该期刊已出版了 10 期特刊和 3 个专题,涵盖各种主题。该期刊将继续出版特刊,重点关注作物科学领域的当代主题。截至 2023 年 1 月 30 日,ScienceDirect 已记录来自 126 个国家/地区的 3,456,459 次下载。引用量持续增长,影响因子从 2.658(2017 年)增加到 6.6(2022 年)(图 1)。该期刊在“农学”领域排名前 4.5%,在“植物科学”领域排名前 8.4%。我们对期刊未来发展的目标是继续为全球作物科学界提供高影响力的服务。发展面临着继续增加数量和影响因子的挑战。
摘要 玉米(Zea mays ssp. mays)是当今世界产量最高的作物,广泛用作食品、饲料和各种工业产品的原料。玉米产量的不断提高是植物育种和现代农业成功的见证。在驯化和历史育种过程中,人类对其形态和生理性状进行了强烈的选择,以利于生态适应、产量和营养价值的提高以及收获。玉米功能基因组学研究的最新进展极大地深化和扩展了我们对玉米驯化和遗传改良的分子和遗传基础的认识。在本文中,我们总结了玉米驯化和驯化后遗传改良的关键性状和调控基因,并对如何利用这些知识来加速未来的玉米育种进行了前瞻性的展望。