摘要:我们研究了使用与铸造型完全消耗的硅在绝缘子(FD-SOI)过程中制造的硅纳米线效率晶体管中栅极诱导的量子点。一系列包裹在硅纳米线上的分裂门自然会沿单个纳米线产生2×N双线阵列的量子点。我们首先研究了这种2×2阵列中量子点的电容耦合,然后展示如何通过通过共享的,共享的,电的,电流的”电极在两个平行的硅纳米线上扩展此类耦合。用一个用作单电子盒传感器运行的量子点,电流门可用于增强电荷灵敏度范围,从而使其能够在单独的硅纳米线中检测电荷状态过渡。通过比较来自多个设备的测量值,我们通过量化电荷灵敏度衰减作为点传感器分离的函数和在双纳米线结构中的构造来说明浮游栅极的影响。关键字:量子点,反射测量法,流栅极耦合器,静电耦合
最近已经提出了大量的自由流量亚MM和MM植入式装置,作为神经科学中的下一代记录和刺激技术[1]。 这些设备可以比采用固定电极放置的整体微电极阵列(MES)[2],[3]的常规方法进行高空间和时间分辨率记录和刺激涵盖大脑更大的大脑区域。 此外,拟议的游离植入物技术提供了较小的侵入性植入过程,对长期疤痕的安全性和鲁棒性提高[4]。 随着脑表面覆盖面积的增加,这些植入物的数量迅速增长。 大量植入物引入了从外部设备的无线电源传输设计中引入的新挑战。 通过超声耦合,电感耦合和电容耦合,已实现了无线电源传递到小型植入物。 在深度植入深度的情况下,超声耦合是有利于植入物在单个芯片上的整合,并且对未对准的较高敏感性有利电感和电容式耦合[5]。大量的自由流量亚MM和MM植入式装置,作为神经科学中的下一代记录和刺激技术[1]。这些设备可以比采用固定电极放置的整体微电极阵列(MES)[2],[3]的常规方法进行高空间和时间分辨率记录和刺激涵盖大脑更大的大脑区域。此外,拟议的游离植入物技术提供了较小的侵入性植入过程,对长期疤痕的安全性和鲁棒性提高[4]。随着脑表面覆盖面积的增加,这些植入物的数量迅速增长。大量植入物引入了从外部设备的无线电源传输设计中引入的新挑战。通过超声耦合,电感耦合和电容耦合,已实现了无线电源传递到小型植入物。在深度植入深度的情况下,超声耦合是有利于植入物在单个芯片上的整合,并且对未对准的较高敏感性有利电感和电容式耦合[5]。
建模是设计 MEMS 设备的关键步骤。它需要在不制造设备的情况下估计设备性能。最初,需要进行简单的计算来验证具有给定性能的设备生产的可能性,并了解实现预期目标所需的基本参数。此外,通常进行优化以改进设计。这两个步骤都需要非常快速且足够精确的模拟方法,以缩短上市时间。在许多情况下,经典的精确 FEM 模拟不是必需的,而是使用简单的分析模型。加速度计等 MEMS 设备通常使用简单形状的元素,可以用简单的分析公式轻松描述。然而,在电容换能的情况下,分析建模变得更加复杂。通常,这些设备在线性响应范围内工作,但无法避免非均匀电场的影响。由于边缘场,使用经典平行板公式时经常低估电容。因此,需要适当的边缘场建模。在本章中,介绍了 MEMS 加速度计示例的边缘场分析建模。特定结构类型称为梳状驱动,由许多小电容器组成,可增强边缘场的影响。分析了所有轴上的加速度计。此外,由于使用细手指,Z 轴加速度计会产生不同的电场分布。因此,推导出各种条件下的解析公式。最后,将该模型与 Coventor MEMS+ 进行比较,并测量制造的结构以验证解析方法。
电容性隔离产品(例如隔离器,隔离放大器,隔离电源产品等)是将输出与输入分开的设备,避免了两个系统之间的不需要直接和瞬态电流,而信号和功率可以正确传输。例如,隔离器可以将引用不同水平引用的信号,保护敏感的控制模块免受高压的影响,并在发生电气故障时最小化故障覆盖率。对于这些孤立的产品,隔离屏障的故障会导致系统故障和潜在的操作员安全危害。在这里,我们讨论了隔离失效模式的机制以及推荐的电容隔离设备以避免隔离失败的方法。
(uint32_t)gp_touch_monitor_size = (uint32_t)g_touch_monitor_size; #else (uint32_t)gp_touch_monitor_buf = monitor_buf_address; (uint32_t)gp_touch_monitor_id = monitor_id_address; (uint32_t)gp_touch_monitor_size = monitor_size_address; #endif 正确)#if (TOUCH_AUTO_JUGE_MONITOR == 0) gp_touch_monitor_buf = (uint8_t *)g_touch_monitor_buf; gp_touch_monitor_id = (uint8_t *)&g_touch_monitor_id; gp_touch_monitor_size = (uint16_t *)g_touch_monitor_size; #else gp_touch_monitor_buf = (uint8_t *)monitor_buf_address; gp_touch_monitor_id = (uint8_t *)monitor_id_address; gp_touch_monitor_size = (uint16_t *)monitor_size_address; #endif
Xiangjun Chen 1,§ , Xiaoxiang Gao 2,§ , Akihiro Nomoto 2,§ , Keren Shi 1 , Muyang Lin 2 , Hongjie Hu 1 , Yue Gu 1 , Yangzhi Zhu 2 , Zhuohong Wu 2 , Xue Chen 1 , Xinyu Wang 2 , Baiyan Qi 1 , Sai Zhou 1 , Hong Ding 2和Sheng Xu 1,2,3,4()1材料科学与工程课程,加利福尼亚大学圣地亚哥分校,拉荷亚大学,加利福尼亚州92093,美国2美国2纳米工程系,加利福尼亚州加州圣地亚哥,加利福尼亚大学,加利福尼亚大学,加利福尼亚大学,加利福尼亚大学,加利福尼亚大学,美国3093,加利福尼亚大学3093093加利福尼亚州圣地亚哥,拉霍亚,加利福尼亚州92093,美国§Xiangjun Chen,Xiaoxiang Gao和Akihiro Nomoto为这项工作做出了同样的贡献。©Tsinghua大学出版社和Springer-Verlag GmbH德国,Springer Nature 2021收到的一部分:2021年1月6日 /修订:2021年3月17日 /接受:2021年3月21日< / div>
本文开发了一种基于机电调幅的实时电容传感方案,用于检测单轴静电梳状驱动微镜的扫描角度和相位,以实现闭环控制。该方案将一个叠加了高频载波信号的正弦波电压信号施加到微镜的共用梳状驱动器上,用于传感和驱动。对驱动/传感电路在频域和时域进行了全面分析,以消除馈通并最小化信号失真。实验结果表明,使用2.5 V pp 和1 MHz 的载波信号,微镜扫描角度的测量精度达到0.15 ◦,时间延迟可控制在0.47 μs 以内。为了更好地理解微镜的扫描稳定性,还研究了温度变化对微镜相位响应的影响。当温度从 25 ◦ C 变为 35 ◦ C 时,以 3840 Hz 驱动的微镜的测量时间延迟从 0 变为 2.4 μ s。所提出的电容式传感方案可用于同时有效测量静电梳状驱动 MEMS 镜的角位置和相位,而无需添加任何外部元件。
采用简单的化学氧化法在优化的实验条件下制备 MnFe 2 O 4 磁性纳米粒子 (MNPs)。通过在化学反应过程中引入铁离子作为尺寸减小剂来减小粒径。MnFe 2 O 4 MNPs 的饱和磁化强度在 45 到 67 emu/g 之间调整。透射电子显微镜 (TEM) 显微照片证实了粒度分布的变化。用较高浓度的铁离子制备的较小尺寸 MnFe 2 O 4 MNPs 实现了 415 F/g 的最高比电容。结果表明,铁离子可用于通过化学氧化法控制铁氧体的尺寸,并且尺寸减小的 MnFe 2 O 4 MNPs 可能是电化学超级电容器应用的合适选择。2020 Elsevier BV 保留所有权利。
摘要 — 在本信中,我们介绍了一种适用于高速采样系统的基于磷化铟 (InP) 双异质结双极晶体管 (DHBT) 技术的 24 GSa/s、> 20 GHz 宽带跟踪保持放大器 (THA)。在所提出的方法中,输入级的输出极点被发射极电容/电阻衰减产生的零点抵消,从而扩展了带宽而没有压降。引入了输出级 V be 调制补偿技术以减少失真。单片微波集成电路 (MMIC) 原型仅占用 0.69 mm 2 ,实验结果表明它具有从直流到 22.3 GHz 的 0.112–f T 带宽,比使用 InP 技术的任何报道的紧凑型 THA 解决方案都要宽。此外,在 24 GSa/s 采样率下,无杂散动态范围 (SFDR) 优于 42 dB,总谐波失真 (THD) 小于 − 25 dBc。THA 功耗仅为 374 mW,是 InP 技术中报告的最低直流功耗之一。
摘要:本文介绍了基于电容性变化的低成本和多触摸传感器的新设计和开发。这个新传感器非常灵活且易于制造,使其成为软机器人应用程序的适当选择。该传感器中使用的材料(导电墨水,有机硅和控制板)是便宜且在市场上很容易找到的。提出的传感器由不同层的晶圆,带有导电墨水的硅胶层和压力敏感的导电纸片制成。像E-Skin这样的先前方法可以测量像人体或纤维等导电物体的接触点或压力,而所提出的设计使传感器能够检测物体的接触点和施加力,而无需考虑对象的材料电导率。传感器可以同时检测五个多点触点。在存在噪声,增益变化和非线性的情况下,使用神经网络结构以可接受的精度来校准施加力。通过商业精确力传感器(ATI)实时测量的力与通过在两个电极层之间更改层的电容获得的产生的电压映射。最后,嵌入建议的触觉传感器的软机器人抓手被用来掌握具有位置和力反馈信号的物体。