最近已经提出了大量的自由流量亚MM和MM植入式装置,作为神经科学中的下一代记录和刺激技术[1]。 这些设备可以比采用固定电极放置的整体微电极阵列(MES)[2],[3]的常规方法进行高空间和时间分辨率记录和刺激涵盖大脑更大的大脑区域。 此外,拟议的游离植入物技术提供了较小的侵入性植入过程,对长期疤痕的安全性和鲁棒性提高[4]。 随着脑表面覆盖面积的增加,这些植入物的数量迅速增长。 大量植入物引入了从外部设备的无线电源传输设计中引入的新挑战。 通过超声耦合,电感耦合和电容耦合,已实现了无线电源传递到小型植入物。 在深度植入深度的情况下,超声耦合是有利于植入物在单个芯片上的整合,并且对未对准的较高敏感性有利电感和电容式耦合[5]。大量的自由流量亚MM和MM植入式装置,作为神经科学中的下一代记录和刺激技术[1]。这些设备可以比采用固定电极放置的整体微电极阵列(MES)[2],[3]的常规方法进行高空间和时间分辨率记录和刺激涵盖大脑更大的大脑区域。此外,拟议的游离植入物技术提供了较小的侵入性植入过程,对长期疤痕的安全性和鲁棒性提高[4]。随着脑表面覆盖面积的增加,这些植入物的数量迅速增长。大量植入物引入了从外部设备的无线电源传输设计中引入的新挑战。通过超声耦合,电感耦合和电容耦合,已实现了无线电源传递到小型植入物。在深度植入深度的情况下,超声耦合是有利于植入物在单个芯片上的整合,并且对未对准的较高敏感性有利电感和电容式耦合[5]。
主要关键词