摘要最近,水力发电资源成为为离网净工程发电的一种有吸引力的手段,尤其是在农村地区。这项工作旨在设计能量存储系统的合适原型,该原型被称为潜在的蒸汽水电电容器。该系统提供了可管理的电力来源,并以低成本提供了可饮用的水,以替代相对较高的电池。该系统由两个太阳能收集器组成,这些太阳能收集器串联连接。第一个收集器中的工作流体是死海,在第二个淡水中,热交换器,一个连接到高柱的热托太阳能热水器将蒸气传递到高海拔高度,以及建筑物屋顶上的冷凝单元。该系统成功地在3.4 m的高度生产大量淡水。产生的势能可以运行一个小涡轮机。系统的能力,将淡水中的热能转换为势能,效率为66.7%。向系统中添加太阳能集中器会增加收集的水。
注意:此信息通常仅是描述性的,并且不打算对任何单元和电池做出或暗示任何表示,保证或保证。单元格和电池设计/规格会经过修改,恕不另行通知。与HJBP联系以获取最新信息
摘要 在尝试开发基于电子电荷的电容标准时,一个多年来一直悬而未决的问题是真空间隙低温电容器的频率依赖性;关键的困难是:我们如何测量低至 0.01 Hz 的频率依赖性?在本文中,我们成功地将频率依赖性的上限设定为 0.01 Hz 至 1 kHz,约为 2 × 10 − 7 。我们通过考虑 Cu 电极表面绝缘膜的色散模型来实现这一点;该模型的关键预测是色散在低温下会降至非常低的值。通过测量有限频率范围内的频率依赖性,我们验证了这一预测,从而提供了足够的支持来得出该模型是正确的结论。我们还指出,与电容标准无关,这种低温电容器为非晶材料低温动力学等领域的测量提供了与频率无关的标准。
随着 LSI 技术的快速发展,LSI 的工作频率不断提高,电源电压不断降低。为了有效使用高性能 LSI,需要能够抑制 LSI 产生的开关噪声并稳定电源电压的新型去耦电容器。通过使用 (Ba,Sr)TiO 3 (BST) 化学溶液沉积 (CSD) 膜和细间距电极结构,我们开发了一种可以在 300 MHz 频率范围内满足这些要求的电容器。在具有 Au 基电极的 Si 晶片上沉积两个 200 nm 厚的 BST 介电层。用于安装到电路板的焊料凸块端子形成在顶部 Cr/Pt/Au 电极上。研制的电容器电容密度为2 µF/cm 2 ,电感为30 pH ,谐振频率约为230 MHz ,击穿电压为10 V 。本文介绍了新型电容器的介电BST薄膜和薄膜电极的材料技术。
本文提出了一种适用于宽频率范围的新型静电可调电容器。针对其应用,提出了完整的设计规则来设计 0.01 pF – 2.05 pF 范围内的可变电容器。根据所需的电容值,设计的电容器占用 0.03 mm 2 – 1.12 mm 2 的空间,与相关已发表的文献相比非常小。使用浮动技术来获得高品质因数。所提出的电容器的品质因数在 1.28G 至 2.78GHz 的频率范围内在 45 到 100 之间,并且可调电容器的可调谐范围为 374%。在提出完整的设计规则和相关方程后,所提出的电容器用于带有螺旋电感器的放大器电路中,并评估了所提出的电容器的性能并将其与其他电容器进行了比较。使用 COMSOL Multiphysics 进行模拟。
代表着一种更可靠、更安全、生命周期更长的替代方案。通过湿纺技术成功获得了许多由石墨烯、碳纳米管、导电聚合物以及最近的 MXenes 制成的纤维,并研究将其作为可穿戴超级电容器的一维电极。[17–29] 然而,这些材料通常涉及复杂的合成程序、有害的分散剂溶剂或后处理步骤,以生产出具有足够机械阻力和电化学性能的纤维。芳族聚酰胺纳米纤维 (ANF) 最近被提议作为一种新的纳米级构建块来设计新的复合材料。[30] 与基于单体聚合的标准路线相反,ANF 可以通过自上而下的方法轻松快速地获得,通过溶解芳族聚酰胺聚合物链,然后通过溶液加工重新组装成宏观纤维或薄膜。[30,31] 芳族聚酰胺聚合物以其机械强度而闻名,但它不导电,必须负载导电填料才能实现电子传输。到目前为止,ANF 主要被研究用作聚合物增强体的填料[32,33]、多功能膜的基质[34–37]、隔热罩[38,39],甚至用作隔膜的添加剂和锂离子电池的固态电解质。[40,41] 然而,尽管 KNF 分散体具有良好的湿纺性,但人们对使用 ANF 来制造 FSC 却关注甚少。在之前的工作中,Cao 等人通过共湿纺核碳纳米管分散体和鞘 ANF 分散体制备了具有核壳结构的纤维。[42] 通过用 H3PO4/PVA 凝胶电解质渗透获得的对称 FSC 显示出高达 0.75 mF cm −1 的显著线性容量。Wang 等人将石墨烯纳米片 (GNPs) 加载到 ANF 分散体中,通过在水/乙酸溶液中凝固获得 ANFs/GNPs 复合线状电极。[43] 然而,他们的结果表明,GNPs 通过恢复对苯二甲酰胺单元之间的氢键干扰了 ANFs 的凝固,导致在 ANFs 基质中 GNPs 高含量时拉伸强度持续下降。在这项工作中,PEDOT:PSS@KNFs 复合纤维通过一个简单的两步工艺生产出来,包括将 Kevlar 纳米纤维化为 Kevlar 纳米纤维 (KNF)、KNF 纤维的湿纺以及随后浸泡在 PEDOT:PSS 水分散体中。以这种方式,由于导电的 PEDOT:PSS 链渗透而几乎保持 KNF 基质的机械阻力不变,因此获得了导电纤维。 PEDOT:PSS@KNF 纤维具有柔韧性、可编织、可缝纫等特点,通过耦合相邻的两根纤维,可以形成对称的 FSC。
本文介绍了一种用于串联超级电容器串和电池串的新型单串联谐振槽和电容器转换器电压平衡电路。它识别了在串联超级电容器系统或电池系统中恢复最大能量和电池间零电压差的平衡电路。该平衡电路不仅继承了基于传统单串联谐振转换器的平衡系统的改进,而且还恢复了开关损耗、传导损耗和电池串间电压差的缺点。所有 MOSFET 开关均由一对互补 PWM 信号控制。此外,谐振槽和并联电容器在充电和放电两种模式之间工作。该电压平衡电路已显示出在电池管理系统中应用的良好效果。
摘要。微电网是小型网络,由几种可再生能源组成,例如风光,阳光,地热,生物能源,水等。,但是该系统的缺点是在波动的力量,当源在一定时间不会产生功率时。因此,当源无法提供足够的负载时,需要电源媒体(例如电池和超级电容器)来保持意外情况。这项研究的目的是对使用电池添加超级电容器并在没有超级电容器的情况下比较电池存储介质的效果。从研究的结果中发现,超级电容器的添加可以将电池稳定性从50%的充电状态(SOC)降低到47%,然后开始时,它在1秒时将其增长了50%,并且可以将其他充电设置为我们的喜好。如果电池存储介质没有超级电容器,则电池充电往往会从50%下降,并且继续下降而没有任何增加。因此可以得出结论,加上超级电容器能够维持微电网系统中电池的性能。1简介微电网是由许多分散能源组成的小型独立电源系统。将可再生能源整合到当前电网中是一个明智的举动,因为它由电荷和存储设备组成[1]。通过微电网将风和太阳能整合到分布网络中,被广泛认为是使用环境可再生能源的成功策略。然而,微电网的大小很小,自我调节的能力较差。因此,由于主动功率和电压稳定性的平衡[1] [13]非常容易受到风与太阳能输出功率的变化以及用户能源需求的变化,因此必须解决微电网操作的关键问题。为了克服电力供应和负载的波动,现在正在开发储能技术。一种智能解决方案是将不同类型的储能存储的优点结合到一个混合系统中。结合了一包超级电容器和锂离子电池包的配置,能够覆盖每种存储的弱点,同时利用两种互补的优势[2] [14]。超级电容器为应对瞬时负载变化提供了即时功率,而锂离子电池则存储了大量能量以进行长期备份。因此,该混合系统可以是将波动可再生能源整合到电网中的可靠解决方案[2] [3]。此外,还将模拟单个能量存储(电池),以查看与双/混合能源存储的比较。提出的解决方案是通过应用杂交概念来提高系统效率,
将来非常需要综合的能源转换和存储机制来满足能源消耗的需求。目前的调查是为了探索在该领域具有巨大潜力的材料。本研究探讨了硫化锌(ZNS)作为超级电容器电极的电荷储存行为。合成是通过成本效益,高效和直接反射方法完成的。合成的ZnS纳米颗粒表现出极好的结晶度,平均水晶大小为17 nm,并且具有微球形态和微球形态传递了74 fg –1在电流密度下1 Ag –1的74 fg –1,而72 fg –1在扫描速率为1 mvs –1的速度速率范围内的速度能力以及对合成的能力的出色速率ands and synessn and synessn ands and ands ands and and and and an 贮存。
© 2018 IEEE。允许个人使用该材料。对于当前或将来的任何媒体中的所有其他用途,必须获得 IEEE 的许可,包括出于广告或促销目的重印/重新发布该材料、创建新的集体作品、转售或重新分发到服务器或列表,或在其他作品中重复使用本作品的任何受版权保护的部分