基于癌症基因组图集(TCGA)的Stad转录组数据和临床谱,我们通过共表达和差分分析确定了与线粒体相关的LNCRNA。与COX回归合作的最低绝对收缩和选择操作员(LASSO)算法被用来构建风险signatus,然后将患者分为高风险和低风险基团。通过就使用Kaplan-Meier生存分析,接收器操作特征(ROC)曲线分析,独立的预后分析来评估签名的预后性能。此外,使用KEGG,GO和GSEA分析来阐明与风险特征相关的生物学功能。最后,还研究了与该特征有关的肿瘤微环境,药物敏感性和肿瘤突变负担(TMB)。
抽象背景/目的:胆管癌(CCA)是一种恶性和阴险的肿瘤,很难治疗。长的非编码RNA(LNCRNA)linc01123是一种生物分子,通过通过影响microRNA在基因表达中的调节功能来调节基因表达来影响癌症的进展。因此,这项研究研究了Linc01123与CCA之间的联系,并探讨了谎言机制。这项研究的目的是提供有关CCA管理的有价值的信息。材料和方法:在这项研究中收集了128名CCA患者中的肿瘤和正常帕拉卡氏菌组织样品。为测量LINC01123和miR-641表达特征,使用了定量逆转录 - 聚合酶链反应。使用了LINC01123和miR-641在CCA细胞中的生物学功能,使用了细胞计数KIT-8(CCK-8)以及Transwell迁移和入侵分析。使用双荧光素酶报告基准测定法和救援实验研究了该机制。结果:这项研究发现,在CCA组织和细胞中LINC01123的表达水平高于正常组织和细胞中的表达水平。linc01123促进了CCA细胞的增殖,迁移和侵袭能力,因此成为CCA中淋巴结转移和晚期TNM阶段的指标。此外,miR-641的表达与linc01123的表达负相关。linc01123通过下调miR-641影响了CCA的进展。结论:CCA肿瘤组织和细胞中LINC01123的上调。linc01123通过目标miR-641促进了CCA加重。linc01123可能是CCA将来治疗的目标。关键字:胆管癌,HCCC9810,HUCCT1,LINC01123,mir-641
属于肿瘤生长因子-β超家族,通过与1型和2型BMP受体结合启动细胞内BMP信号传导(3)。由BMP/BMPR介导的信号转导已被证明参与多种生物过程,例如胚胎发育过程中的自我更新和干性维持(4)。最近,在乳腺癌和胃癌中检测到骨形态发生蛋白受体2(BMPR2)的异常表达,并且已证明BMPR2的异常表达与肿瘤细胞的增殖、分化和迁移有关(5-7)。然而,BMPR2及其调节机制在PDAC中的作用仍然未知。我们的研究通过使用肿瘤微阵列的免疫组织化学(IHC)确定了与正常胰腺组织相比,PDAC肿瘤中的BMPR2过度表达。抑制BMPR2导致胰腺癌(PC)细胞增殖受抑制和G2/M停滞。通过蛋白质组学分析,我们发现GRB2是BMPR2的潜在靶点,其致癌作用在PC细胞中得到进一步证实。生长因子受体结合蛋白2(GRB2)是一种参与细胞存活、增殖等多种细胞功能的衔接蛋白,也是多种致癌信号通路的重要调节因子(8,9)。GRB2的作用已在许多癌症中得到广泛研究,尤其是乳腺癌(10-12)。我们进行了生物信息学分析,以探索GRB2可能参与的潜在分子机制。体外实验表明,BMPR2通过调节生长因子受体结合蛋白2/磷脂酰肌醇3-激酶/蛋白激酶B(GRB2/PI3K/AKT)通路来调节PC细胞增殖。BMPR2抑制剂LDN193189显着抑制BMPR2诱导的GRB2/PI3K/AKT通路的激活。利用原位 PC 和患者来源的异种移植 (PDX) 模型,我们进一步证明了抑制 BMPR2 可通过抑制体内 GRB2/PI3K/AKT 轴来抑制 PC 生长。在此,我们揭示了 BMPR2 在 PDAC 中的致瘤作用,为使用 BMPR2 抑制剂治疗 PDAC 提供了证据。我们根据 ARRIVE 报告清单(可访问 http://dx.doi. org/10.21037/atm-20-2194)撰写了以下文章。
案例表现,一名50多岁的男人患有四肢际病史,这是由于汽车事故和慢性便秘,腹泻,下腹痛,恶心和呕吐。CT扫描显示乙状结肠炎和8厘米(最大维度)左下象限小肠质量。剖腹手术显示出完全切除的肠壁中的jejunum质量。对试样的总检查显示了肠壁内柔软的大型乳脂状肿瘤(图1A – C)。显微镜下,样品揭示了由纺锤体细胞实心板组成的侵入性肿瘤(图1D)。纺锤体细胞具有适量的嗜酸性细胞质,过度骨质,卵形对细长核,有些具有突出的核仁。有丝分裂活性是轻快的,具有非典型有丝分裂数字。存在局灶性坏死和出血。免疫染色表明肿瘤细胞的阳性是阳性的AE1/AE3,Vimentin,Ema(焦点)和CAM5.2(焦点)(图2),而CD117,DOG1,CD34,S100,S100,SMA,Desmin,desmin,ck7和ck20(未显示)(未显示)。KI-67增殖指数高达50–60%。 总体发现支持了与小肠的肉眼癌癌相一致的杂质纺锤体肿瘤。KI-67增殖指数高达50–60%。总体发现支持了与小肠的肉眼癌癌相一致的杂质纺锤体肿瘤。
摘要 背景 E3 泛素连接酶鼠双微体 2 (MDM2) 结合 p53 转录激活结构域并作为 TP53 通路的强效抑制剂,TP53 通路是尿路上皮癌 (UC) 中三种最关键的致癌通路之一。然而,MDM2 扩增在 UC 中的临床意义及其对肿瘤免疫背景的影响仍不清楚。 方法 本研究分析了来自两个当地队列(ZSHS 队列和 FUSCC 队列)的 240 名具有匹配临床注释的 UC 患者。我们通过免疫组织化学分析和靶向测序评估了 MDM2 状态与临床结果、治疗效果和免疫学特征之间的相关性。此外,来自五个独立外部队列的 2264 个 UC 样本(包含基因组、转录组和临床数据)用于验证。结果 MDM2 扩增 (MDM2 Amp) 或蛋白质过表达 (MDM2 OE) 与 UC 患者总体生存率较低 (ZSHS 队列,Log-rank p<0.001;FUSCC 队列,Log-rank p=0.030) 和对铂类化疗 (ZSHS 队列,Log-rank p<0.001) 以及抗 PD-1/PD-L1 免疫疗法 (FUSCC 队列,Log-rank p=0.016) 的反应降低有关,无论 TP53/p53 状态如何。MDM2 扩增或过表达进一步与具有去分化形态的高级别 UC 肿瘤相关。此外,MDM2 扩增或过表达的 UC 与免疫逃避结构相关,其特征是三级淋巴结构浸润比例较低、CD8 + T 细胞、IFN-γ + 细胞、GZMB + 细胞丰度较低,以及免疫检查点分子表达降低,包括程序性死亡配体 1 (PD-L1)、程序性死亡-1 (PD-1) 和细胞毒性 T 淋巴细胞相关蛋白 4 (CTLA-4)。结论 MDM2 扩增或过表达定义了一组致命的 UC 患者,无论 TP53 /p53 状态如何,其预后较差,并且对铂类化疗和免疫疗法均有耐药性。这些肿瘤的特点是去分化形态和免疫抑制微环境。准确
本文全面回顾了佐贝妥昔单抗的作用、疗效和安全性。佐贝妥昔单抗是一种开创性的嵌合单克隆抗体,旨在靶向 Claudin 18.2 (CLDN18.2),这是一种紧密连接蛋白,在各种胃肠道癌症中经常过表达,包括胃腺癌 (G) 和胃食管连接部腺癌 (GEJ)。这种药物在治疗不可切除和转移性 G/GEJ 癌症方面引起了关注,尤其是对于肿瘤表达 CLDN18.2 的 HER2 阴性患者。佐贝妥昔单抗是一种与 CLDN18.2 结合的药物,其结合可启动免疫反应,攻击和杀死癌细胞。它通常与氟嘧啶和含铂化疗联合使用。该药物(以前称为 IMAB362),商品名为 Vyloy,由日本东京的 Astellas Pharma 开发。经过多轮临床试验,它被美国食品药品监督管理局(FDA)批准作为局部晚期、不可切除癌症的一线治疗方案,成为晚期G/GEJ癌症的一种有希望的选择。
1肝脏外科和移植系,肝癌研究所,中国福丹大学,上海200032,中国肝癌医院。 2癌变和癌症入侵的关键实验室(Fudan University),教育部,上海200032,中国。 3中国医学学院的肝癌复发和转移的肝癌复发和转移单元,中国北京100010。 4肝癌研究所,肝癌研究所,中山医院,福丹大学,上海200032,中国。 5林克西亚人民医院,林克斯市731100,普通外科部,中国。 6 Fudan University,Fudan University,上海200032,中国。 7基因工程的国家主要实验室,福丹大学,上海200032,中国。 8上海福丹大学中心医院重症监护室,200032年,中国。 #作者同样贡献。1肝脏外科和移植系,肝癌研究所,中国福丹大学,上海200032,中国肝癌医院。2癌变和癌症入侵的关键实验室(Fudan University),教育部,上海200032,中国。3中国医学学院的肝癌复发和转移的肝癌复发和转移单元,中国北京100010。4肝癌研究所,肝癌研究所,中山医院,福丹大学,上海200032,中国。 5林克西亚人民医院,林克斯市731100,普通外科部,中国。 6 Fudan University,Fudan University,上海200032,中国。 7基因工程的国家主要实验室,福丹大学,上海200032,中国。 8上海福丹大学中心医院重症监护室,200032年,中国。 #作者同样贡献。4肝癌研究所,肝癌研究所,中山医院,福丹大学,上海200032,中国。5林克西亚人民医院,林克斯市731100,普通外科部,中国。 6 Fudan University,Fudan University,上海200032,中国。 7基因工程的国家主要实验室,福丹大学,上海200032,中国。 8上海福丹大学中心医院重症监护室,200032年,中国。 #作者同样贡献。5林克西亚人民医院,林克斯市731100,普通外科部,中国。6 Fudan University,Fudan University,上海200032,中国。 7基因工程的国家主要实验室,福丹大学,上海200032,中国。 8上海福丹大学中心医院重症监护室,200032年,中国。 #作者同样贡献。6 Fudan University,Fudan University,上海200032,中国。7基因工程的国家主要实验室,福丹大学,上海200032,中国。8上海福丹大学中心医院重症监护室,200032年,中国。 #作者同样贡献。8上海福丹大学中心医院重症监护室,200032年,中国。#作者同样贡献。
方法 对所有接受 DGM 检测(这是标准治疗方法)的晚期肺腺癌患者进行了回顾性横断面研究。该研究是在获得国家医学科学院 Bir 医院的机构批准后进行的。从文件记录中收集了 2022 年 1 月至 2023 年 7 月期间与晚期肺腺癌的年龄、性别和 DGM 相关的数据。使用非概率便利抽样技术进行数据收集。DGM 测试使用直接测序或聚合酶链反应 (PCR) 或下一个基因测序 (NGS) 技术检测 EGFR 突变,荧光原位杂交 (FISH)/PCR/NGS 检测 ALK 和 FISH 或 NGS 检测 ROS1,使用福尔马林固定石蜡包埋 (FFPE) 组织样本。测试是通过单一测序技术或作为目标面板测试或 NGS 的一部分进行的,具体取决于活检样本和患者对测试方法的决定。所有 DGM 测试均在外包实验室进行,因为这些测试在公司内部无法进行。收集了 EGFR、ALK 和 ROS 1 突变报告,因为这三种是尼泊尔最常见的 DGM 测试,因为这些突变的治疗药物很容易获得,如果进行其他不常见的突变,也会收集。使用 SPSS-20 和描述性统计工具分析收集的数据。在描述性统计中,计算了分类变量的频率和百分比,然后使用饼图和条形图呈现数据。
案例表现:我们介绍了一名49岁的女性,被诊断出患有IV期子宫透明细胞癌。该患者有心房效果的史,最初接受了几种手术干预措施和基于铂的化学疗法,但是这些疗法导致了不良的结局和快速的肿瘤进展。基因检测显示,具有稳定的微卫星的高肿瘤突变负担(TMB-H,42.24突变/MB),PMS2基因中有可疑的有害突变。常规疗法失败后,患者接受了cadonilimab(375 mg)和结合白蛋白结合的紫杉醇(380 mg)的组合治疗,用于六个周期。接下来是cadonilimab单一疗法进行维护。这种治疗方案导致了完全反应(CR),到2023年1月4日,没有可检测到的腹部流体或增大的淋巴结。CR状态是在2024年4月7日的随访期间保持的。不良反应包括严重的骨髓抑制,轻度的皮肤反应,甲状腺功能减退症和3级高血糖,所有这些均经过症状进行管理。
协调中心:华盛顿大学医学院首席研究员:道格拉斯·R·阿德金斯(Douglas R. Adkins),医学博士电话:(314)362-4471电子邮件:dadkins@wustl.edu sub-Investigators机构机构Ravindra Uppaluri,M.D。,Ph.D。 Dana Farber癌症研究所耳鼻喉科Max Artyomov博士华盛顿大学病理学/免疫学丽贝卡·切诺克(Rebecca Chernock),医学博士华盛顿大学头部和颈部病理学Hiram Gay,医学博士 华盛顿大学辐射肿瘤学Nsangou Ghogomu,医学博士 华盛顿大学耳鼻喉科学Dorina Kallogjeri,医学博士,MPH华盛顿大学生物统计学Brian Nussenbaum,M.D。 华盛顿大学耳鼻喉科Randal Paniello,医学博士 华盛顿大学耳鼻喉科Jay Piccirillo,医学博士 华盛顿大学耳鼻喉科/生物统计学Jason Rich,M.D。 华盛顿大学耳鼻喉科罗伯特·D·施雷伯(Robert D. Schreiber)博士华盛顿大学病理学/免疫学Wade Thorstad,医学博士 华盛顿大学辐射肿瘤学Tanya M. Wildes,医学博士 华盛顿大学医学肿瘤学Gavin P. Dunn,医学博士,博士华盛顿大学神经外科研究药物:MK-3475(Pembrolizumab,KeyTruda)IND#:124877 Clinical Trials.gov#:NCT022966684华盛顿大学头部和颈部病理学Hiram Gay,医学博士华盛顿大学辐射肿瘤学Nsangou Ghogomu,医学博士华盛顿大学耳鼻喉科学Dorina Kallogjeri,医学博士,MPH华盛顿大学生物统计学Brian Nussenbaum,M.D。 华盛顿大学耳鼻喉科Randal Paniello,医学博士 华盛顿大学耳鼻喉科Jay Piccirillo,医学博士 华盛顿大学耳鼻喉科/生物统计学Jason Rich,M.D。 华盛顿大学耳鼻喉科罗伯特·D·施雷伯(Robert D. Schreiber)博士华盛顿大学病理学/免疫学Wade Thorstad,医学博士 华盛顿大学辐射肿瘤学Tanya M. Wildes,医学博士 华盛顿大学医学肿瘤学Gavin P. Dunn,医学博士,博士华盛顿大学神经外科研究药物:MK-3475(Pembrolizumab,KeyTruda)IND#:124877 Clinical Trials.gov#:NCT022966684华盛顿大学耳鼻喉科学Dorina Kallogjeri,医学博士,MPH华盛顿大学生物统计学Brian Nussenbaum,M.D。华盛顿大学耳鼻喉科Randal Paniello,医学博士华盛顿大学耳鼻喉科Jay Piccirillo,医学博士华盛顿大学耳鼻喉科/生物统计学Jason Rich,M.D。华盛顿大学耳鼻喉科罗伯特·D·施雷伯(Robert D. Schreiber)博士华盛顿大学病理学/免疫学Wade Thorstad,医学博士 华盛顿大学辐射肿瘤学Tanya M. Wildes,医学博士 华盛顿大学医学肿瘤学Gavin P. Dunn,医学博士,博士华盛顿大学神经外科研究药物:MK-3475(Pembrolizumab,KeyTruda)IND#:124877 Clinical Trials.gov#:NCT022966684华盛顿大学耳鼻喉科罗伯特·D·施雷伯(Robert D. Schreiber)博士华盛顿大学病理学/免疫学Wade Thorstad,医学博士华盛顿大学辐射肿瘤学Tanya M. Wildes,医学博士华盛顿大学医学肿瘤学Gavin P. Dunn,医学博士,博士华盛顿大学神经外科研究药物:MK-3475(Pembrolizumab,KeyTruda)IND#:124877 Clinical Trials.gov#:NCT022966684华盛顿大学医学肿瘤学Gavin P. Dunn,医学博士,博士华盛顿大学神经外科研究药物:MK-3475(Pembrolizumab,KeyTruda)IND#:124877 Clinical Trials.gov#:NCT022966684