细胞凋亡既可以在细胞内也可以在细胞外被激活,导致细胞内发生一系列生化变化,最终导致细胞死亡。无论启动细胞凋亡的因素是什么,该过程都涉及激活 caspase 家族的一组蛋白水解酶、DNA 碎片化、细胞骨架崩解和凋亡小体的形成。细胞凋亡在某个时间点之后是不可逆的,因此对其的精确控制和调节极其重要。在健康细胞中,促进(促凋亡)和抑制(抗凋亡)凋亡过程的调节蛋白之间存在平衡。其中最大的家族是 Bcl-2 蛋白。Bcl-2 家族中的促凋亡蛋白包括:BID、Bax、Bak、Bad、NOXA 和 PUMA。抗凋亡蛋白包括 BCL-2、BCL-xL、MCL-1 和 survivin。
目的:本研究旨在研究 17-DMAG(HSP90 抑制剂)和 NVP-BEZ235(PI3K/mTOR 双抑制剂)联合治疗对顺铂耐药人膀胱癌细胞的协同抗肿瘤作用。材料和方法:将表现出顺铂耐药性的人膀胱癌细胞(T24R2)暴露于剂量递增的 17-DMAG(2.5-20 nM)中,联合或不联合 NVP-BEZ236(0.5-4 μM)与顺铂联合使用。通过 CCK-8 分析评估抗肿瘤作用。根据剂量反应研究,使用克隆形成试验和联合指数值评估两种方案之间的协同相互作用。进行流式细胞术和蛋白质印迹分析协同作用机制。结果:17-DMAG 在顺铂敏感细胞(T24)和顺铂耐药细胞(T24R2)中均表现出剂量和时间依赖性的抗肿瘤作用。然而,NVP-BEZ235 的抗肿瘤作用具有自限性。17-DMAG 和 NVP-BEZ235 以 1:200 的固定比例联合使用在顺铂耐药膀胱癌细胞中在较宽剂量范围内均显示出明显的抗肿瘤作用,克隆形成试验显示结果与协同试验相一致。三维分析显示两种药物之间存在很强的协同作用,协同体积为 201.84 μM/mL 2%。Western blot 证实联合用药导致细胞周期 G1 期阻滞和 caspase 依赖性细胞凋亡。结论:HSP90 抑制剂单药治疗及与 PI3K/mTOR 存活通路抑制剂 NVP-BEZ235 联合治疗对顺铂耐药膀胱癌具有协同抗肿瘤作用,导致细胞周期停滞于 G1 期并诱导 caspase 依赖性凋亡通路。
凋亡是细胞的编程死亡,不需要,其功能受到损害环境受损的功能,这是发达生物体中细胞关系的要求。从胚胎时期开始,一生都有凋亡机制和程序性细胞死亡。有些细胞生活了数年,而有些只活了几个小时。在许多组织中的连续性,例如皮肤,胃肠道系统和免疫系统取决于细胞凋亡和细胞更新。[1]凋亡是癌细胞抗癌活性最可接受的机制之一。凋亡的调节机制非常复杂。活性氧,胱天蛋白酶激活,肿瘤坏死因子(TNF),蛋白激酶和线粒体途径构成了凋亡的基础。[2]
近膜 (JX) 结构域,其中包含 PKC 磷酸化位点 (S985)、胱天蛋白酶切割位点 (D1002) 和 E3 泛素连接酶 CBL (Casitas-B 系淋巴瘤) 对接位点 (Y1003),均控制 RTK 活性的下调 (图 1a)。3–7 这种改变破坏了外显子 14 两侧的内含子剪接位点,包括内含子 13 的剪接受体位点和内含子 14 的剪接供体位点,或外显子 14 编码序列本身内的突变,都会导致外显子 14 在转录本中跳跃。这些突变中最常见的是碱基替换,其次是插入/缺失。因此,导致MET外显子14跳跃的可变剪接事件会激活MET-HGF通路,促进肿瘤细胞增殖、迁移,并阻止细胞凋亡(图1b)。
用靶向疗法生存的残留癌细胞充当最终抗性疾病的储层。尽管对靶向残留细胞的治疗非常感兴趣,但由于我们对这种细胞状态中存在的脆弱性的有限了解,努力受到阻碍。Here, we report that diverse oncogene-targeted therapies, including inhibitors of epidermal growth factor receptor (EGFR), anaplastic lymphoma kinase (ALK), KRAS, and BRAF, induce DNA double-strand breaks and, consequently, ataxia-telangiectasia mutated (ATM)–dependent DNA repair in oncogene-matched residual tumor cells.在细胞系,小鼠异种移植模型和人类患者中观察到的这种DNA损伤反应是由涉及胱天蛋白酶3和7激活的途径以及下游caspase激活的脱氧核糖核酸酶(CAD)的驱动的。CAD又通过其内源性抑制剂ICAD的caspase介导的降解而激活。在EGFR突变非小细胞肺癌(NSCLC)的模型中,通过小分子EGFR靶向治疗的肿瘤细胞合成依赖于ATM,并与ATM激酶抑制剂在体内消除这些细胞。这导致EGFR突变体NSCLC小鼠异种移植模型的渗透性和耐用反应更多,包括源自已建立的细胞系和患者肿瘤的响应。最后,我们发现,具有携带共同发生的EGFR突变体NSCLC的罕见患者,ATM中的功能丧失突变在第一代EGFR抑制剂疗法中与EGFR突变NSCLC患者缺乏缺乏有害ATM突变的患者相对于第一代EGFR抑制剂疗法表现出扩展的无进展生存率。一起,这些发现为基于机制的ATM抑制剂与现有靶向疗法的基于机制的整合建立了理由。
补充图 2:miR-328 依赖性变化导致初治或伊马替尼耐药的 K-562 细胞对伊马替尼的敏感性发生变化,随后分析细胞活力和凋亡。用 25 nM miR 模拟物 pre-miR-328 或 75 nM miR 抑制剂 anti-miR-328 转染 K-562 细胞(初治细胞 (A) 和两种耐药亚系 (0.5 (B)、2 µM (C) IM)),并与 2 µM 伊马替尼孵育 48 小时。在 pre-miR-212 转染和 anti-miR-212 转染后,使用 WST-1 测定法 (上图) 分析细胞活力,使用发光 caspase 9 glo 测定法 (下图) 分析凋亡,以阴性对照转染细胞为标准表示。分析是在三个独立实验中进行的。数据根据各自的阴性对照转染细胞进行标准化。误差线表示 SD,统计分析使用学生 t 检验进行
免疫原性细胞死亡(ICD)可能导致细胞内新抗原和与损伤相关的分子模式(DAMP)释放,这为重新编码肿瘤免疫微环境带来了潜力。5通过激活抗原呈递细胞的成熟并启动细胞毒性T淋巴细胞,ICD可以引起有效的抗肿瘤免疫,以减轻癌症消融。因此,靶向ICD途径已成为开发癌症免疫疗法有效策略的新兴范式。凋亡是ICD的新鉴定模式,它是由caspase介导的加油动物裂解触发的。6,7毒气的切割释放出其N末端结构域,这些结构域转移到细胞膜中形成毛孔,并随着细胞内含量的快速释放和Proin弹药细胞因子诱导细胞肿胀和膜破裂。累积
功能受体酪氨酸激酶,该酪氨酸激酶结合了固定在相邻细胞上的混杂GPI锚定的Ephrin-A家族配体,从而导致接触依赖性双向信号传导进入相邻细胞。受体下游的信号通路称为正向信号传导,而ephrin配体下游的信号通路称为反向信号传导。在GPI锚定的ephrin-A配体中,EFNA5是EFNA7的同源/功能性配体,它们的相互作用调节了调节细胞细胞粘附和排斥的脑发育。在轴突上具有驱虫活性,例如参与了皮质丘脑轴突的引导以及视网膜轴突对丘的正确地形图。还可以通过caspase(CASP3)依赖性促凋亡活性来调节脑发育。正向信号传导可能会导致ERK信号通路的组件激活,包括MAP2K1,MAP2K2,MAPK1和MAPK3,它们在激活EPHA7时被磷酸化。
我们的临时性研究表明,Epi-321的给药可在十种不同的FSHD患者衍生的患者衍生的永生化和原发性成肌细胞中对Dux4和Dux4-Downstream基因表达的稳健和剂量抑制,无论D4Z4重复序列的数量如何,并且表现出抗iapoptication Asspase 3 Inge caspase 3 ige。从机械上讲,Epi-321显示了D4Z4靶基因座的重新甲基化,从而导致DUX4表达抑制。此外,在人源化FSHD小鼠模型中对Epi-321的体内评估显示,在mRNA和蛋白质水平上对Dux4-Pathway的剂量依赖性抑制作用,以及肌肉组织中的抗凋亡活性。此外,使用FSHD患者衍生的永生化的成肌细胞(Epi-321)进行了3D设计的人体肌肉组织(3D EMT),从而有效地抑制了DUX4和DUX4-PATHWAY基因长达46天,并显示出肌肉缩减性的剂量依赖性,表现出了肌肉缩减的显着改善,表现出受肌肉的增长和Teteratient poptertic posteatial posteat posteat teteat teteat awteat aTteat aTteat aTeat eateat aTeat酸味。
背景:肝细胞癌(HCC)是癌症相关死亡的主要原因之一。Sorafenib是该疾病的一线疗法,与降低的治疗功效有关,可以通过与selumetinib结合来克服这种疗效。在这种情况下,这项工作的主要目标是开发一个新的纳米系统,该系统由含有靶向配体GalNAC的脂质双层涂层的聚合物核心组成,以专门有效地将两种药物分配到HCC细胞中,以显着提高其治疗效率。方法:混合纳米系统(HNP)的物理化学表征及其成分是通过动态光散射,ZETA电位,基质辅助激光解吸电离的电离 - 飞行质量光谱的时间 - 飞行质量光谱的时间和透射电子微观。细胞结合,摄取和HNP的特异性通过流式细胞和共聚焦显微镜评估。通过Alamar Blue Assay评估了治疗活性:通过:细胞活力;使用FITC-ANNEXIN V通过流式细胞术进行细胞死亡;胱天蛋白酶活性通过发光;通过流式细胞仪的线粒体膜电位;通过蛋白质印迹和分子靶水平。结果:获得的数据表明,这些混合纳米系统具有两种药物的较高稳定性和载荷能力,以及合适的理化特性,即在大小和表面电荷方面。此外,生成的制剂允许绕过耐药性并具有高特异性,从而促进了HCC细胞中的大细胞死亡水平,但不能在非肿瘤细胞中。通过增加的编程细胞死亡来实现共同载体药物的抗肿瘤作用的增强,这与线粒体膜电位的强烈降低相关,caspase 3/7和caspase 9的活性显着增加,并大量增加附属蛋白V-v-p-p-p-p-p-py-py-py-PORSISTIS的细胞。结论:开发的配方产生了较高且协同的抗肿瘤作用,揭示了改善针对HCC治疗方法的转化潜力。关键字:肝细胞癌,混合纳米系统,药物输送,Galnac,Sorafenib,Selumetinib