现代生活的几乎所有方面都取决于太空技术。多亏了计算机视频的一般和深度学习技术的巨大进步,几十年来,全世界都见证了将深度学习的发展用于解决太空问题的问题,例如自动驾驶机器人,诸如示踪剂,类似昆虫的机器人,类似昆虫的机器人和SpaceCraft的健康监测。这些只是一些在深度学习的帮助下具有高级空间行业的重要例子。但是,深度学习模型的成功需要大量的培训数据才能具有不错的性能,而另一方面,用于培训深度学习模型的公开空间数据集非常有限。当前没有用于基于太空的对象检测或实例分割的公共数据集,部分原因是手动注释对象分割掩码非常耗时,因为它们需要像素级标签,更不用说从空间获取图像的挑战了。在本文中,我们的目标是通过释放数据集以进行航天器检测,实例分割和零件识别来填补这一差距。这项工作的主要贡献是使用太空设置和卫星的图像开发数据集,并具有丰富的注释,包括绑定的航天器和口罩的框架盒对物体部分的水平,这些盒子是通过自动程序和手动努力的混合而获得的。我们还提供了对象检测和Intance Sementation的最新方法作为数据集的基准。可以在https://github.com/yurushia1998/satellitedataset上找到下载建议数据集的链接。
地球大气中包含中性大气成分,位于约90至600 km之间,称为中性热层,而该区域高于600 km左右的区域被称为Exosphere(图。4)。热层主要由中性气体颗粒组成,这些气体颗粒倾向于根据其分子量进行分层。AO是下层热层中的主要成分,氦气和氢主导了较高的区域。如图4所示,较低热层中的温度随着高度从90 km的最低增加而迅速增加。最终,它变得独立于高度,并接近称为外层温度的渐近温度。热层温度以及密度和组合,由于太阳极端紫外线(EUV)辐射的吸收加热,对太阳周期非常敏感。此过程已通过代理参数,即10.7 cm太阳能无线电通量(Flo.7)有效地建模。
太阳能航行是一种革命性的驱动航天器的方式。太阳帆(图3)使用大型,轻巧的镜面表面,以捕获从阳光下的动量,以将航天器向前推动。光由称为光子的无质量颗粒组成。光子在撞击其反射表面时将其动量(复数)转移到航天器中。就像在离子推进器中一样,每一个击中帆的光子都可以产生一个小的推力。Starshot Mission将使用太阳能航行前往我们太阳系Alpha Centauri最近的星系。
会议为航天器设计师,经理,材料工程师和科学家提供了一个论坛,以审查和认真评估LDEF的结果,从他们的相关性,意义以及对航天器设计实践的影响的角度。从国家航空和空间管理局,国防部,工业和学术观点介绍了LDEF调查结果对材料选择,利用和资格的影响。由于
必须先精确地预测和控制空间中的物体(例如航天器,卫星和太空站),以确保安全性和有效性。运动学是一个在3D空间中对这些身体运动的描述和预测的领域。运动学课程涵盖了四个主要主题领域:粒子运动学介绍,深入研究了两个部分的刚性身体运动学(从使用定向余弦矩阵和欧拉角的经典动作描述开始,并以现代描述仪的综述,例如Quaternions和quaternions and Classical and Classical and Modified Rodrigues参数)。课程以查看静态态度的确定结束,使用现代算法来预测和执行太空中身体的相对取向。
NASA STI计划在特别出版物下运行。科学,机构首席信息官的主持人。技术或历史信息收集,组织,提供归档和NASA计划,项目和任务,散布NASA的STI。NASA STI经常关注的具有计划的受试者提供了对NASA的实质性公共利益的访问。Aeronautics和Space数据库及其公共接口,NASA技术报告服务器,技术翻译。因此,提供了全球外国航空和太空科学的英语翻译收藏之一。与结果相关的科学和技术材料都在NASA的两个非NASA渠道中发表。和NASA在NASA STI报告系列中,其中包括以下报告类型:专业服务还包括组织和发布研究结果,分发技术出版物。专业研究公告和完成的研究或重大重要供稿的报告,提供信息台和个人阶段的研究阶段,呈现搜索支持的结果,并启用数据交换NASA计划并包括广泛的数据服务。或理论分析。包括有关NASA STI数据的更多信息以及被认为是程序的信息,请参见以下内容:持续参考值。电子邮件将您的问题发送至help@sti.nasa.govNASA反审查的正式专业人员的一部分访问NASA STI计划主页论文,但在http://www.sti.nasa.gov手稿的http://www.sti.nasa.gov手稿的长度和图形演示范围内的严格限制较小。
摘要。小行星影响与挠度评估(AIDA)是NASA DART任务与ESA HERA任务之间的合作。目的范围是通过动力学碰撞研究小行星挠度。DART航天器将与Didymos-B碰撞,而地面站监视轨道变化。HERA航天器将研究影响后情况。HERA航天器由主航天器和两个小立方体组成。HERA将通过摄像头,雷达,卫星到卫星多普勒跟踪,LIDAR,地震测定法和重力法监测小行星。在本文中报道了LIDAR工程模型高度计Helena上的第一次迭代。Helena是一个TOF高度计,可提供时间标记的距离和速度测量值。LIDAR可用于在小行星导航附近的支持,并提供科学信息。Helena设计包括一个微芯片激光和低噪声传感器。这两种技术之间的协同作用使得可以开发一种紧凑的仪器,以达到14公里的范围测量。热力学和辐射模拟。该设计受到振动,静态和热条件的影响,并且可以通过结果结论,望远镜符合随机振动水平,静态负载和工作温度。
摘要。本文简要回顾了卫星和航天器的电力推进技术。电力推进器,也称为离子推进器或等离子推进器,与化学推进器相比,其推力较低,但由于能量与推进剂分离,因此可以实现较大的能量密度,因此在太空推进方面具有显著优势。尽管电力推进器的发展可以追溯到 20 世纪 60 年代,但由于航天器上可用功率的增加,该技术的潜力才刚刚开始得到充分发挥,最近出现的全电动通信卫星就证明了这一点。本文首先介绍了电力推进器的基本原理:动量守恒和理想火箭方程、比冲和比推力、性能指标以及与化学推进器的比较。随后,讨论了电源类型和特性对任务概况的影响。根据推力产生过程,等离子推进器通常分为三类:电热、静电和电磁装置。通过讨论电弧喷射推进器、MPD 推进器、脉冲等离子推进器、离子发动机以及霍尔推进器及其变体等长期存在的技术,介绍了这三个组以及相关的等离子放电和能量传输机制。随后讨论了更先进的概念和性能改进的新方法:磁屏蔽和无壁配置、负离子推进器和磁喷嘴等离子加速。最后,分析了各种替代推进剂方案,并研究了近期可能的研究路径。
范围和分辨率请参见下表,以选择范围和默认的工程单元。单位可以更改为在相同传感器范围内列出的任何列出的单位。分辨率是固定的,并限于可用的显示数字。Accuracy Accuracy includes linearity, hysteresis, repeatability Standard accuracy: ±0.25% of full scale ±1 least significant digit HA accuracy option: ±0.1% FS ±1 LSD, see range table Sensor hysteresis: ±0.015% FS, included in accuracy Sensor repeatability: ±0.01% FS, included in accuracy Display 3 readings per second nominal display update rate 4 digit LCD, 0.5“ H和5个字符0.25” H字母数字BL:可选的LED显示背光电池,电池寿命,电池效果低2 AA碱,包括b:大约2000小时BL:大约150-1500小时,具体取决于背光使用情况低电池符号和函数在前面按钮开启或关闭量规,零量表参考仪表以及通过最大/分钟函数进行循环,用于工程单元选择的内部按钮,自动关闭时间选择,自动关闭时间内部按钮的最大值和最高次数的最高且最高的零件(如果是最高的,则播放)最高的,Calibra Timimie,calibra timimele,最小值,最小值)循环通过最小,最大,仅适用于最小的清除,仅最大,最大/min或无配置以清除或保留电源关闭时的最大/min值