摘要:大约10,000年前的大多数农作物的人工驯化和改善,大约在世界各地,以实现高生产率,高质量和广泛的适应性。它是由当地农民的基于表型的选择开始的,并开发到当前基于生物技术的育种,以养活超过70亿人。对于大多数谷物作物,产量与谷物产量有关,这可以通过增加晶粒数量和重量来增强。晶粒数通常在渗透发育过程中确定。许多用于渗透发育的突变体和基因已经在谷物作物中表征了。因此,此类基因的优化可能会发现与产量相关的特征,例如晶粒数。随着基因组迅速发展的技术和对产量相关性状的理解,设计驱动的繁殖正成为现实。这篇综述介绍了有关谷物作物中相关性特征的知识,重点是大米,玉米和小麦。接下来,回顾了新兴的基因组编辑技术和最新研究,这些技术将该技术应用于靶向渗透性开发,将该技术应用于工作作物的产量改善。这些方法有望迎来一个新的繁殖实践时代。
随着育种 4.0 的发展,需要新的基因分型和表型工具来帮助育种过程提高基因型的生产力 (Van Eeuwijk 等人,2019 年,Wallace 等人,2018 年)。这包括整合多层基因组学、高通量植物表型 (HTPP) 和大规模环境分型以改善复杂性状预测的趋势 (Crossa 等人,2021 年,Cooper 等人,2014 年)。全基因组预测,称为基因组预测 (GP) 或基因组选择 (GS),是将这些新工具整合到育种计划中以支持高产和可持续产量品种的主要方法。GS 的主要目标是根据标记信息预测复杂性状,通过为候选者生成基因组估计育种值来提高选择的准确性。因此,GS 可能优于表型选择,因为它可以增加单位时间的遗传增益并缩短育种周期的长度(Crossa 等人,2017 年)。最近,育种者的要求越来越多地转向将 HTPP 数据和环境信息纳入多环境试验分析(Araus 等人,2018 年)。然而,它是
抽象的微量营养素营养不良是发展中国家人类疾病的主要原因之一。铁(Fe)是一种重要的微量营养素,因为它在人类代谢(例如免疫系统和能量生产)中使用。估计表明,全球人口占30%以上的人口不足,对婴儿和孕妇构成了特定威胁。植物已经适应了各种策略,用于吸收,运输,积累和储存组织和器官中的FE,后来可以被人类消费。生物强化是指植物可食代部分中的小质营浓度的增加,并了解植物中Fe积累的途径。常规的植物育种,转基因,农艺干预措施和微生物介导的生物体现都是解决FE缺乏的潜在方法。本评论文章对谷物作物中的Fe BioFortification的关键评估进行了严格评估。它涵盖了对FE的整体存在,在人类和植物环境中的重要性以及在FE吸收,运输,累积,积累和存储植物零件中使用的各种策略的深入分析。此外,本文探讨了FE的生物利用度,并研究了生物化的策略,并特别强调了传统方法和近期旨在增强粮食作物中FE含量的分类。鉴于FE对人类生命的重要性,适当的生物强化策略可以更好地消除隐藏的饥饿而不是人为的补充。
随着育种 4.0 的发展,需要新的基因分型和表型工具来帮助育种过程提高基因型的生产力 (Van Eeuwijk 等人,2019 年,Wallace 等人,2018 年)。这包括整合多层基因组学、高通量植物表型 (HTPP) 和大规模环境分型以改善复杂性状预测的趋势 (Crossa 等人,2021 年,Cooper 等人,2014 年)。全基因组预测,称为基因组预测 (GP) 或基因组选择 (GS),是将这些新工具整合到育种计划中以支持高产和可持续产量品种的主要方法。GS 的主要目标是根据标记信息预测复杂性状,通过为候选者生成基因组估计育种值来提高选择的准确性。因此,GS 可能优于表型选择,因为它可以增加单位时间的遗传增益并缩短育种周期(Crossa 等人,2017 年)。最近,育种者的要求越来越多地转向将 HTPP 数据和环境信息纳入多环境试验分析(Araus 等人,2018 年)。然而,
群集定期间隔短的短文重复序列(CRISPR)/ CRISPR相关蛋白9(CAS9)系统已成为过去十年来许多动植物和动物物种中靶向基因组编辑的最重要工具。CRISPR/CAS9技术还引发了关键谷物作物中基因组编辑的应用和技术进步的范围,包括大米,小麦,玉米和大麦。在这里,我们回顾了CRISPR/ CAS9的先进用途以及在谷物作物的基因组编辑中的衍生系统,以增强各种农艺重要特征。我们还重点介绍了提供的新技术进步,用于提供预组装的cas9-grna核糖核蛋白(RNP)编辑系统,多重编辑,功能获得的策略,使用人工智能(AI)工具(AI)工具以及将CRISCR与新型快速繁殖(SB)结合在一起(SB)和Vernalsization and Nalnalization and Nalnalization Caltergies。
Six generations, namely P 1 , P 2 , F 1 , F 2 , BC 1 and BC 2 of five crosses of bread wheat viz ., AKAW 4842 x Raj 4238, AKAW 4924 x RW 5, DBW 39 x MP 3353, GW 11 x DWAP 1540 and GW 455 x UP 2968 were developed to estimate the extent of heterosis and在面包小麦中,近亲抑郁症和基本遗传原因。对家庭之间的方差分析(十字)表明,由于所有字符,由于十字架引起的均方根都非常重要。每个家族(交叉)中后代(世代)之间方差的分析表明,在所有五个十字架中研究的所有字符的六个基本一代平均值之间存在显着差异。在本研究中,所有十字架都描述了每植物和几乎所有成分性状的谷物产量的显着和正质杂种和杂化。Among which crosses AKAW 4842 x Raj 4238, AKAW 4924 x RW 5, GW 11 x DWAP 1540 and GW 455 x UP 2968 depicted negative inbreeding as well as significant and positive mid parent heterosis and heterobeltiosis for grain yield per plant therefore, intermating in F 2 generation may be advantageous for improving particular character for above mentioned crosses.通常,可以通过谱系选择方法改善受固定添加基因效应的每植物的谷物产量。
摘要 种子寿命是衡量种子在长期储存期间活力的指标,对于种质保存和作物改良计划至关重要。此外,寿命也是确保粮食和营养安全的重要特征。因此,更好地了解调节种子寿命的各种因素对于改善这一特性和尽量减少种质再生过程中的遗传漂变是必不可少的。特别是,谷物作物种子在储存过程中的变质会对农业生产力和粮食安全产生不利影响。种子变质的不可逆过程涉及不同基因和调控途径之间的复杂相互作用,导致:DNA 完整性丧失、膜损伤、储存酶失活和线粒体功能障碍。确定种子寿命的遗传决定因素并使用生物技术工具对其进行操纵是确保长期种子储存的关键。遗传学和基因组学方法已经确定了几个调节主要谷物(如水稻、小麦、玉米和大麦)寿命特征的基因组区域。然而,对包括小米在内的其他禾本科植物的研究却非常少。部署基因组学、蛋白质组学、代谢组学和表型组学等组学工具并整合数据集将精确定位影响种子存活率的分子决定因素。鉴于此,本综述列举了调节寿命的遗传因素,并证明了综合组学策略对于剖析种子变质的分子机制的重要性。此外,本综述还提供了部署生物技术方法来操纵基因和基因组区域以开发具有长期储存潜力的改良品种的路线图。
摘要本研究探讨了在谷物和豆科植物上种植牡蛎蘑菇的生存能力,饲料质量较差,研究牡蛎蘑菇生产力以及对农业系统中质量,氮气和碳流的影响。将四种类型的稻草(小麦,玉米,Faba豆和大豆)用作蘑菇种植的底物。新鲜产量的变化很大,从玉米稻草的114%生物学效率到小麦稻草的58%,而干燥的产量范围从玉米稻草的9.2%生物量转化率到小麦稻草的3.8%。蘑菇的蛋白质含量在小麦稻草上的16.8%和面包豆稻草的23.2%之间变化,与稻草的氮含量相关。此外,结果表明,碳排放量的显着差异,范围从估计的3.5公斤(在小麦稻草上)到每公斤干蘑菇发射的2.6千克(在大豆稻草上)。这些发现强调了基材在蘑菇种植中的重要性,对农业资源管理和粮食生产产生了影响。取决于焦点,不同的底物可能被认为是最佳的。玉米稻草在这项研究中产生了大多数蘑菇,而大豆稻草则散发出最少的碳,而Faba Bean Straw产生了蛋白质含量更高的蘑菇,小麦稻草保留了最氮的含量。
住宿是由于外部因素,植物特征及其相互作用引起的次要细胞壁而导致的茎永久位移。解剖学,形态学和组成性状是引起住宿的植物特征。与形态和解剖学特征相比,住宿抗性和细胞壁组成的相关性并不经常回顾。在本综述中,基于主要细胞壁成分(木质素,纤维素和半纤维素)和微量矿物质,全面审查了细胞壁组成与谷物茎的耐药性之间的关系。从所有谷物作物中回顾的文献体系中,发现木质素和纤维素与住宿耐药性具有显着的正相关。然而,在大多数研究中,纤维素和木质素的结构特征对住宿耐药性的影响均未研究。本综述还强调了生物量顽固性和放置抗性权衡在遗传细胞壁修饰中的重要性。
摘要:根据农业使用的类型和施用的作物旋转,土壤有机碳的积累可能取决于,这可能导致全球碳循环中的CO 2固定较少。对不同农作物生产系统(谷物,草)中有机碳排放的知之甚少。缺乏关于土壤中碳含量对植物生产力的影响的更详细的研究,以及土壤的物理特性与矿物质肥料中温室气体(GHG)的吸收,生存能力和排放之间的联系。这项研究的目的是估计不同农作物旋转中土壤有机碳隔离潜力的长期影响。有机碳固换的最大潜力是诺福克型农作物旋转,其中降低土壤生育能力的农作物被每年增加土壤肥力的农作物所取代。与连续的黑色休耕相比,土壤碳固醇的潜力明显更高(46.72%),从27.70到14.19%,与田间作物和谷物作物旋转相比,与中间作物饱和的谷物作物和谷物作物旋转分别相比。在碳固存的角度,将多年生草保持一年是最有效的,而土壤仍然充满了以前农作物中未沉积的谷物稻草。与农作物旋转相比,没有肥料受精的黑色休耕,将土壤中有机碳的数量降低了两次,碳管理指数降低了2-5次,并为农业中碳固执的潜力带来了最大的风险。
