本文的主要目的是介绍和批判性地评估 CRISPR-Cas9 基因组编辑技术在复活灭绝物种方面的可能性。猛犸象,科学名称为 Mammuthus primigenius,是一种已灭绝的更新世巨型动物物种,以其在干旱草原苔原极寒恶劣条件下生存的出色适应能力而闻名,那里的平均气温在 -30°C 至 -50°C 之间。猛犸象强大的抗寒能力及其与苔原和北方森林的生态联系促使科学家们假设复活猛犸象可能对保护和恢复现代世界退化生态系统的平衡和健康做出重大贡献。科学家还认为,复活猛犸象可以增强现存物种的遗传多样性,从而进一步增强动物物种对不断变化的环境条件的恢复力和适应性。通过将 CRISPR-Cas9 基因组编辑技术应用于现代大象,科学家们预见到了从现代大象中成功复活猛犸象的可能性,将曾经被视为“不可能的任务”变成了可行的现实。本文将全面分析 CRISPR-Cas9 基因组编辑技术的机制和局限性,强调如何操作和利用这项独特的技术,使科学家能够以所需的方式操纵和修改生物体的基因组,从而让灭绝的物种复活。关于复活灭绝物种的好处是否大于伦理问题和潜在危害的争论仍未解决,本文还将讨论围绕这一努力的伦理影响。
2 深圳大学微尺度光电子研究所二维光电子科学与技术教育部国际合作实验室,深圳 518060 3 扬州大学化工学院,扬州 225002 4 九州工业大学工学部应用化学系,北九州 804-8550,日本 抑制光生电荷复合对于高效光催化产氢至关重要。同质结因其优异的晶体结合和能带结构匹配而比异质结受到更多关注。然而,大多数同质结受到连续氧化相和还原相引起的氧化还原反应干扰,阻碍了光催化活性的提高。制备电荷相和氧化还原相完全空间分离的同质结光催化剂仍然具有挑战性。这里,我们通过背靠背几何结构制备了一种氧化相和还原相完全分离的二维同质结 CeO2。所制备的 CeO2 表现出两种不同的表面:一种光滑,另一种粗糙。实验和理论结果表明,与光滑表面相比,粗糙表面上有更多的 CeO2{220} 具有更高的还原能力,而 CeO2{200} 具有更高的可见光吸收能力。二维同质结 CeO2 产生的氢气量是普通 CeO2 纳米片的三倍,甚至超过了负载金纳米粒子的 CeO2 纳米片的氢气量。这项工作提出了一种新的同质结光催化剂模型,其电荷相和氧化还原相都完全空间分离,这将启发对同质结光催化剂的进一步研究。光催化制氢代表了一种很有前途的太阳能燃料生产方法。 1-5 光生电荷的分离 6-8 是增强光催化活性的关键因素,因为它决定了实际转移到催化剂表面的电荷量。促进电荷分离的策略包括形貌控制、9,10 掺入掺杂剂、11-14 用贵金属 15 纳米粒子改性表面以捕获光生电荷并延长其寿命,或构建异质结 16-18 或同质结 19-21 以促进电荷载体的空间分离。异质结或同质结界面处的能带偏移可产生电势梯度,使电荷载体彼此远离,从而抑制它们的复合。与异质结光催化剂相比,同质结光催化剂是同一材料两个区域之间的界面,有利于晶相键合和能带结构匹配。 22,23 同质结光催化剂可分为几种类型,如 pn 结、21,22,24 nn 结、20、25 非晶-晶体结 26 以及结合了不同形貌特征(如 0D、1D 和 2D 材料)的复合材料。23,27 例如,Zou 等人 21 将 n 型氧缺陷的 TiO 2 QD 与 p 型钛缺陷的 TiO 2 结合,制成 TiO 2 pn 同质结,结果表明 pn 同质结 TiO 2 的光催化制氢性能是纯 p-TiO 2 的 1.7 倍。尽管同质结光催化剂具有多功能性和坚固性,但在大多数同质结中,氧化相和还原相是连续的且位于同一侧,导致氧化还原反应相互干扰,阻碍了光催化活性的提高。制备表现出电荷和氧化还原相完全空间分离的同质结光催化剂仍然是一个挑战。在此,我们设计了一种空间电荷分离的二维同质结 CeO2 用于光催化产氢,其氧化相和还原相通过背靠背几何结构完全分离。所制备的 CeO2 呈现二维形貌,并表现出两种不同的表面:一种是光滑的,另一种是粗糙的。实验和理论结果表明,与光滑表面相比,粗糙表面上 CeO2 {220} 含量更高,具有更强的还原能力;CeO2 {200} 含量更高,具有更强的可见光吸收能力。二维同质结 CeO2 的产氢量是普通 CeO2 纳米片的 3 倍,甚至超过了负载金纳米粒子的 CeO2 纳米片。二维同质结 CeO2 产生的氢量是普通 CeO2 纳米片的 3 倍,甚至超过了负载金纳米颗粒的 CeO2 纳米片。二维同质结 CeO2 产生的氢量是普通 CeO2 纳米片的 3 倍,甚至超过了负载金纳米颗粒的 CeO2 纳米片。
摘要背景:乳腺癌(BC)是女性最常见的癌症类型。迫切需要确定新的治疗靶标及其机制。血小板激活因子乙酰水合酶1B3(PAFAH1B3)是一种多聚酶,是一种重要的代谢酶,可介导脂质代谢并影响几种肿瘤。进行了这项研究以阐明Pafah1b3在BC进展中的功能并研究其潜在机制。方法:基因表达分析互动分析(GEPIA)数据库和免疫印迹显示了乳腺癌组织中PAFAH1B3的表达。细胞计数KIT-8(CCK-8),菌落形成和Transwell分析显示对乳腺癌细胞生长和迁移的影响。流式细胞仪(FCM)和免疫印迹测定对乳腺癌细胞凋亡的影响。从机械上讲,进一步进行免疫印迹以确认机制。结果:我们的发现表明,pafah1b3在卑诗省高度表达,Pafah1b3的耗竭抑制了BC细胞的生长和迁移,同时促进凋亡。从机械上讲,PAFAH1B3耗尽破坏了磷脂酰肌醇3-激酶(PI3K)/蛋白激酶B(AKT)途径,从而抑制BC的进展。结论:我们发现PAFAH1B3通过PI3K/AKT轴增强了BC细胞的生长以及运动性,并且可能是BC的目标。
文章信息摘要本研究研究了音乐疗法作为对中国广州9至11岁的特殊需求的教育干预的有效性。定量和定性案例研究研究问题:该主题可以从音乐疗法中受益,包括与语音发展,社会互动,认知和自我调节有关的参数?该研究采用比较定性数据(FABS)与教师和经验丰富的儿童治疗师的半结构化访谈,并在三个月的干预中比较了教学前和后结构的认知和行为转移调查。一些确定的效果包括增强的参与度,交流,交互式配置文件,工作记忆和处理速度。关于定量变化,数值分析显示,WISC-V的工作记忆指数和处理速度指数以及Vineland-3的通信领域的显着改善。行为检查结果得出的结论是,多动症和攻击性不太突出。支持定量证据由教育工作者和治疗师的工作人员提供的积极描述性数据组成,指出声音,同伴互动和增强的学生自我调节。但是,该研究还指出了应用音乐疗法时可能面临的问题,例如缺乏资源和关于残疾和治疗的文化信念。对音乐疗法的反应存在差异,进一步增强了学习障碍学生教学法中相对论方法的论点。这项研究提供了在特殊教育中使用音乐疗法的证据,强调实施这种干预措施时文化背景的重要性。该研究的意义涉及中国特殊教育领域,这需要在音乐治疗艾滋病和培训师上进行更多的资本投资。尽管研究结果的概括可能受到本研究中采用的案例研究方法的影响,但它为城市中国特殊教育学习者的音乐疗法的可能性提供了重要的见解。它开辟了有关音乐疗法实践有效性以及中国各种教育系统中音乐疗法的有效性以及音乐疗法的文化适当性进行更广泛的长期研究的可能性。
传统电力系统以同步发电机为主,同步发电机被证明具有大惯性和阻尼等固有优点,有利于电力系统的稳定运行。同时,通过调速器和自动电压调节器 (AVR),同步发电机可以很容易地实现频率和电压的调节。惯性通常可以定义为物体对其运动状态变化的抵抗力。在电力系统稳定性方面,惯性表示在短路等扰动下保持转子转速和频率的能力 [1]。该函数由同步发电机的摆动方程确定,该方程描述了发电和负载之间的功率不平衡。当任何扰动导致功率不平衡时,转子将释放或储存与惯性成比例的动能来抵抗频率变化 [2]。这种效应有助于降低频率最低点和频率变化率 (RoCoF) [3],[4]。
摘要 东南亚是受气候变化危害最大的地区之一,也是温室气体的主要排放源。为了应对气候变化,该地区必须逐渐减少化石燃料的使用,并过渡到可再生能源的使用。考虑到这一点,本文研究了印度尼西亚和马来西亚的可再生能源政策,尽管这两个国家都制定了净零排放目标,但在可再生能源推广方面仍面临重大挑战。本文概述了两国的可再生能源政策和挑战。本文着眼于国内政策,发现印度尼西亚由于各种原因无法吸引必要的投资进入其可再生能源部门,而马来西亚由于其分散的结构而在实施政策方面遇到困难。本文最后指出了未来研究的方向,包括参与不同领域的新兴文献。 关键词:可再生能源;东南亚;气候变化;印度尼西亚;马来西亚;太阳能 1. 简介
摘要:与单个有机或无机固体电解质相比,陶瓷中的聚合物复合固体电解质(PIC-CSE)具有重要的优势。在常规的PIC -CSE中,离子传导途径主要局限于陶瓷,而与陶瓷 - 聚合物界面相关的更快路线仍被阻塞。这一挑战与两个关键因素有关:(i)由于陶瓷聚集而建立广泛而不间断的陶瓷 - 聚合物接口的困难; (ii)陶瓷 - 聚合物界面由于其固有的不兼容而对导电没有反应。在这里,我们通过引入与聚合物兼容的离子液体(PCIL)提出策略,以在陶瓷和聚合物基质之间进行介导。这种介导涉及与陶瓷表面上与李 +离子相互作用的极地PCIL以及PCIL和聚合物链的极性成分之间的相互作用。该策略解决了陶瓷聚合问题,从而导致均匀的图片-CSE。同时,它通过建立互穿的通道来激活陶瓷 - 聚合物界面,从而促进Li +离子在整个陶瓷相,陶瓷 - 聚合物界面和中间途径的有效运输。因此,获得的PIC -CSE表现出高离子电导率,特殊的柔韧性和稳健的机械强度。其锂金属袋细胞的高能量密度为424.9 WH kg -1(不包括包装膜)和穿刺安全性。这项工作为使用商业生存能力设计PIC -CSE铺平了道路。■简介包括聚(乙烯基氟化物)(PVDF)和60 wt%Pcil涂层的Li 3 Zr 2 Si 2 PO 12(LZSP)填充剂的PIC - CSE,表现出0.83 ms cm-1的离子电导率,均为0.83 ms cm-cm的li +离子转移数量为0.81,并在0.81中产生了emper the em li + ion tragter n.81和extrential in e米〜300%c的〜300%c.包括聚(乙烯基氟化物)(PVDF)和60 wt%Pcil涂层的Li 3 Zr 2 Si 2 PO 12(LZSP)填充剂的PIC - CSE,表现出0.83 ms cm-1的离子电导率,均为0.83 ms cm-cm的li +离子转移数量为0.81,并在0.81中产生了emper the em li + ion tragter n.81和extrential in e米〜300%c的〜300%c.
1 广东省农产品质量安全检测中心有限公司,广州市天河区粤垦路桥园街 20 号 2 楼,邮编 510507 2 广东省农商热带农业研究所,广州市增城区中信镇学院南路农商研究院科技大楼,邮编 511365 3 仲恺农业工程学院,广州市海珠区仲恺路 501 号,邮编 510225 * E-mail: dundou91369@163.com 收稿日期:2019 年 12 月 2 日 / 接受日期:2020 年 1 月 15 日 / 发表日期:2020 年 4 月 10 日 由于基于适体的生物传感器制备简单、易于修改,同时具有良好的稳定性和广泛的结合靶标,因此引起了众多研究者的关注。本文基于适体的基本原理和电化学适体生物传感器领域的最新研究成果,对电化学技术在兽药残留检测适体生物传感器领域的最新发展进行了综述,并展望了未来发展前景。关键词:适体;电化学传感器;兽药残留;β-激动剂;硝基呋喃;氟喹诺酮类 1.引言
通过利用多长度尺度结构层次结构的增强能力,合成的Hy-Drogels具有巨大的前景,是一种低成本和丰富的材料,用于应用非预言机械鲁棒性的应用。但是,将高冲击电阻和高水含量整合到单个水凝胶材料中的较高柔软度仍然是一个巨大的挑战。在这里,我们报告了一种简单而有效的策略,涉及双向冻结和压缩退火,从而导致层次结构化的水凝胶材料。的合理的2D层状结构,良好的纳米晶体结构域和层次之间的鲁棒界面相互作用,协同促进了创纪录的弹道能量吸收能力(即合理的2D层状结构,良好的纳米晶体结构域和层次之间的鲁棒界面相互作用,协同促进了创纪录的弹道能量吸收能力(即2.1 kJ m -1),不牺牲其高水量(即85 wt。 %)和出色的柔软度。 以及其低成本和非凡的能量耗散能力,我们的水凝胶材料是用于武装样的保护环境的常规水凝胶材料的耐用替代品。85 wt。%)和出色的柔软度。以及其低成本和非凡的能量耗散能力,我们的水凝胶材料是用于武装样的保护环境的常规水凝胶材料的耐用替代品。
由于电池容量有限,能源效率有效的导航构成了电动汽车的重要挑战。我们采用贝叶斯的方法来对路段的能源消耗进行建模,以进行有效的导航。为了学习模型参数,我们开发了一个在线学习框架,并研究了几种探索策略,例如汤普森采样和上限限制。然后,我们将我们的在线学习框架扩展到多代理设置,在该设置中,多个车辆可适应和学习能量模型的参数。通过分析批处理反馈下的算法,我们分析了汤普森采样,并在单位代理和多代理设置中建立了严格的遗憾界限。最后,我们通过在几个现实世界的城市路网络上进行实验来演示方法的性能。