。CC-BY-ND 4.0 国际许可证(未经同行评审认证)是作者/资助者,他已授予 bioRxiv 永久展示预印本的许可。它是此预印本的版权持有者此版本于 2025 年 1 月 12 日发布。;https://doi.org/10.1101/2025.01.09.632202 doi:bioRxiv 预印本
抽象目标骨关节炎是一种复杂的疾病,具有巨大的公共卫生负担。基因组广泛的关联研究(GWAS)已经鉴定出数百个骨关节炎相关的序列变体,但是这些信号支撑的效应基因在很大程度上仍然难以捉摸。了解三维(3D)空间中的染色体组织对于以组织方式(例如,基因和调节元件之间的遥远基因组特征(例如,基因和调节元素之间)之间的长距离接触至关重要。在这里,我们生成了原发性骨关节炎软骨细胞的第一个整个基因组染色体构象分析(HI-C)图,并确定了该疾病的新型候选效应基因。方法从8例膝关节骨关节炎患者收集的原发软骨细胞进行了HI-C分析,以将染色体结构与基因组序列联系起来。然后将鉴定的环与骨关节炎GWAS结果和来自原发性膝关节骨关节炎软骨细胞的表观基因组数据结合在一起,以通过增强子启动子相互作用来鉴定与基因调节有关的变异。结果,我们确定了与77个骨关节炎GWAS信号相关的染色质环锚固中的345种遗传变异。例如,PAPPA与胰岛素类似生长因子1(IGF-1)蛋白的周转直接相关,而IGF-1是修复受损软骨细胞受损的重要因素。结论我们构建了第一张原代人软骨细胞的高图,并将其作为科学界的资源提供。Ten of these variants reside directly in enhancer regions of 10 newly described active enhancer- promoter loops, identified with multiomics analysis of publicly available chromatin immunoprecipitation sequencing (ChIP- seq) and assay for transposase- accessible chromatin using sequencing (ATAC- seq) data from primary knee chondrocyte cells, pointing to two new candidate effector genes SPRY4 and PAPPA(妊娠与血浆蛋白A)以及对已知参与骨关节炎的基因SLC44A2的进一步支持。通过将3D基因组学与大规模的遗传关联和表观遗传学数据相结合,我们确定了骨关节炎的新型候选效应基因,从而增强了我们对疾病的理解,并可以作为假定的高价值新型药物靶标。
©作者2024。Open Access本文是根据Creative Commons Attribution 4.0 International许可获得许可的,该许可允许以任何媒介或格式使用,共享,适应,分发和复制,只要您对原始作者和来源提供适当的信誉,请提供与创意共享许可证的链接,并指出是否进行了更改。本文中的图像或其他第三方材料包含在文章的创意共享许可中,除非在伴侣的信用额度中另有说明。如果本文的创意共享许可中未包含材料,并且您的预期用途不受法定法规的允许或超过允许的用途,则您需要直接从版权所有者那里获得许可。要查看此许可证的副本,请访问http:// creativecommons.org/licenses/4.0/。Creative Commons公共领域奉献豁免(http://creativecommons.org/publicdo- main/Zero/Zero/1.0/)适用于本文提供的数据,除非在信用额度中另有说明。
(未通过同行评审认证)是作者/资助者。保留所有权利。未经许可就不允许重复使用。此预印本版本的版权持有人于2025年1月1日发布。 https://doi.org/10.1101/2024.12.30.630839 doi:Biorxiv Preprint
髓样白血病是具有多种突变景观的异质性癌症。尽管许多突变的基因属于普通蛋白质复合物,但有些缺乏已知的功能伙伴,并且具有不清楚的作用。pHF6是一种良好的染色质结合蛋白,复发突变赋予急性和慢性髓样白血病的不利预后。在这里,使用人PHF6敲除和救援,我们表明PHF6是一种转录阻遏物,可结合活性染色质并抑制茎基因程序。我们剖析了九个临床错义突变,并表明所有人都会产生不稳定的,肌莫尔的或非功能性的PHF6蛋白。在收敛的证据线指导下,我们将PHIP(一种新认识的AML突变蛋白)视为PHF6的功能合作伙伴。我们表明PHIP损失表PHF6损失,并且PHF6需要PHIP占据染色质并发挥下游转录效应。我们的工作将两个不同的白血病蛋白统一的PHF6和PHIP统一成为一种抑制AML茎的常见功能复合物。
Jan Dreyer, 1 , 12 Giulia Ricci, 1 , 12 Jeroen van den Berg, 1 , 2 , 12 Vivek Bhardwaj, 1 , 2 Janina Funk, 1 Claire Armstrong, 3 , 4 Vincent van Batenburg, 1 , 2 Chance Sine, 3 , Michael Van den Berg, 14 . skje B. Tjeerdsma, 5 Richard Marsman, 1 Imke K. Mandemaker, 1 Simone di Sanzo, 6 Juliette Costantini, 1 Stefano G. Manzo, 2 , 7 , 8 Alva Biran, 9 Claire Burny, 6 Marcel A.T.M.van Vugt,5 Moritz vo lker-Albert,6 Anja Groth,9,10,11 Sabrina L. Spencer,3,4 Alexander van Oudenaarden,1,2和Francesca Mattiroli 1,1,13, * 1 * 1 S 3美国科罗拉多大学博尔德大学生物化学系40303,美国4 Biofrontiers Institute,科罗拉多大学博尔德大学,BOLDER,BOLDER,CO 80303,美国5研究所,荷兰市CX Amsterdam 121,1066 CX Amsterdam 8米兰米兰大学生物科学系,2013年意大利9 Novo Novo Novo Novo Novo Novo nordist Foundation Foundation for for Copenhagen,University of Copenhagen,Copenhagen 2200丹麦哥本哈根13领导联系 *通信:f.mattiroli@hubrecht.eu https://doi.org/10.1016/j.molcel.2024.10.023
重印和权限信息可在www.nature.com/reprints上获得。信件和材料请求应发给Jia Li,Yubin Zhou或Yun Huang。,jiali@tamu.edu; yubinzhou@tamu.edu; yun.huang@tamu.edu。作者贡献Y.H.和Y.Z.指导并监督该项目。T.H. 进行了大多数与动物相关的工作,分子表征和测序文库制备。 J.L. 对高通量测序数据进行了所有生物信息学分析。 L.G.,T.W。 和S.F. 支持的测序库准备。 Y.D. 执行的细胞分类。 A.D.和M.C. 进行了基因分型和支持的分子克隆。 A.G.,K.W.,C.R。 和C.K. 支持动物有关的工作。 Y.Y.,C.C.Y.,S.L。 和M.J.Y. 提供了人体骨髓样品。 M.A.G. 和X.C. 提供了支持这项研究的基本资源和关键的智力投入。 Y.H. 和Y.Z. 写了这篇论文。 所有作者都参与了讨论,数据解释和论文编辑或讨论。T.H.进行了大多数与动物相关的工作,分子表征和测序文库制备。J.L.对高通量测序数据进行了所有生物信息学分析。L.G.,T.W。 和S.F. 支持的测序库准备。 Y.D. 执行的细胞分类。 A.D.和M.C. 进行了基因分型和支持的分子克隆。 A.G.,K.W.,C.R。 和C.K. 支持动物有关的工作。 Y.Y.,C.C.Y.,S.L。 和M.J.Y. 提供了人体骨髓样品。 M.A.G. 和X.C. 提供了支持这项研究的基本资源和关键的智力投入。 Y.H. 和Y.Z. 写了这篇论文。 所有作者都参与了讨论,数据解释和论文编辑或讨论。L.G.,T.W。和S.F.支持的测序库准备。Y.D. 执行的细胞分类。 A.D.和M.C. 进行了基因分型和支持的分子克隆。 A.G.,K.W.,C.R。 和C.K. 支持动物有关的工作。 Y.Y.,C.C.Y.,S.L。 和M.J.Y. 提供了人体骨髓样品。 M.A.G. 和X.C. 提供了支持这项研究的基本资源和关键的智力投入。 Y.H. 和Y.Z. 写了这篇论文。 所有作者都参与了讨论,数据解释和论文编辑或讨论。Y.D.执行的细胞分类。A.D.和M.C. 进行了基因分型和支持的分子克隆。 A.G.,K.W.,C.R。 和C.K. 支持动物有关的工作。 Y.Y.,C.C.Y.,S.L。 和M.J.Y. 提供了人体骨髓样品。 M.A.G. 和X.C. 提供了支持这项研究的基本资源和关键的智力投入。 Y.H. 和Y.Z. 写了这篇论文。 所有作者都参与了讨论,数据解释和论文编辑或讨论。A.D.和M.C.进行了基因分型和支持的分子克隆。A.G.,K.W.,C.R。 和C.K. 支持动物有关的工作。 Y.Y.,C.C.Y.,S.L。 和M.J.Y. 提供了人体骨髓样品。 M.A.G. 和X.C. 提供了支持这项研究的基本资源和关键的智力投入。 Y.H. 和Y.Z. 写了这篇论文。 所有作者都参与了讨论,数据解释和论文编辑或讨论。A.G.,K.W.,C.R。和C.K.支持动物有关的工作。Y.Y.,C.C.Y.,S.L。 和M.J.Y. 提供了人体骨髓样品。 M.A.G. 和X.C. 提供了支持这项研究的基本资源和关键的智力投入。 Y.H. 和Y.Z. 写了这篇论文。 所有作者都参与了讨论,数据解释和论文编辑或讨论。Y.Y.,C.C.Y.,S.L。和M.J.Y.提供了人体骨髓样品。M.A.G. 和X.C. 提供了支持这项研究的基本资源和关键的智力投入。 Y.H. 和Y.Z. 写了这篇论文。 所有作者都参与了讨论,数据解释和论文编辑或讨论。M.A.G.和X.C.提供了支持这项研究的基本资源和关键的智力投入。Y.H. 和Y.Z. 写了这篇论文。 所有作者都参与了讨论,数据解释和论文编辑或讨论。Y.H.和Y.Z.写了这篇论文。所有作者都参与了讨论,数据解释和论文编辑或讨论。
Mitotic chromatin marking governs asymmetric segregation of DNA damage Juliette Ferrand #1 , Juliette Dabin #1 , Odile Chevallier 1 , Matteo Kane-Charvin 1 , Ariana Kupai 2 , Joel Hrit 2 , Scott B. Rothbart 2 , Sophie E. Polo 1 † 1 Laboratory of Epigenome Integrity, Epigenetics & Cell Fate Centre, UMR7216 CNRS,巴黎大学,巴黎,法国2表观遗传学系,范·安德尔研究所,美国密歇根州大急流城。#同等贡献
图 2. DNMT3A 编辑细胞中的基因表达动态表明了一种不同于二进制的记忆形式。A 使用与 dCas9、PhlF 或 rTetR 融合的 KRAB、DNMT3A 或 TET1 作为 DNA 结合域 (DBD) 进行瞬时表观遗传编辑的概述。B 本研究开发的实验系统示意图。报告基因通过位点特异性染色体整合整合到内源性哺乳动物基因座中。哺乳动物组成型启动子 (EF1a) 驱动荧光蛋白 EBFP2 的表达。上游结合位点能够靶向募集表观遗传效应物,这些效应物与 DNA 结合蛋白 rTetR、PhlF 或 dCas9 融合。报告基因两侧是染色质绝缘体,以与其他基因隔离。 C 实验概述描述了瞬时转染到带有报告基因的细胞、基于转染水平的荧光激活细胞分选和时间过程流式细胞术测量。D 根据图 C 中显示的实验时间线,DNMT3A 编辑(DNMT3A-dCas9)报告基因的基因表达动态。显示的是 DNMT3A 编辑细胞的单细胞流式细胞术测量(EBFP2)。DNMT3A-dCas9 靶向启动子上游的 5 个靶位点,并使用乱序 gRNA 靶序列作为对照(图 SE.2 A、B、表 S3)。黄色阴影表示检测到转染标记的时间。显示的数据来自 3 个独立重复的代表性重复。E 转染 DNMT3A-dCas9 和细胞分选后 14 天进行 MeDIP-qPCR 和 ChIP-qPCR 分析,以获得高水平的转染。分析了启动子区域(表 S4 和方法)。显示的数据来自三个独立的重复。报告的是使用标准 ∆∆ C t 方法相对于活性状态的倍数变化及其平均值。误差线是平均值的标准差。DNMT3A-dCas9 靶向启动子 (gRNA) 上游的 5 个靶位点。使用乱序的 gRNA 靶序列 (gRNA NT) 作为对照。* P <0.05,** P <0.01,*** P <0.001,非配对双尾 t 检验。F 根据图 C 中显示的实验时间线的 KRAB 编辑 (PhlF-KRAB) 基因表达动态。显示的是单个细胞的报告基因 (EBFP2) 的流式细胞术测量值。黄色阴影区域表示在未应用 DAPG 期间检测到转染标记的时间。从第 6 天开始,在 PhlF-KRAB 和 PhlF 条件下应用 DAPG。每天测量不同的独立重复。显示的数据来自 3 个独立重复。G 转染 PhlF-KRAB 和高水平转染细胞分选后 6 天的 MeDIP-qPCR 和 ChIP-qPCR 分析。分析的是启动子区域。数据来自三个独立重复。显示的是相对于活性状态的标准 ∆∆ C t 方法确定的倍数变化及其平均值。误差线是平均值的标准差。* P <0.05,** P <0.01,*** P <0.001,非配对双尾 t 检验。H 当 KRAB = 0、TET1 = 0 时获得的染色质修饰回路。参见 SI 图 SM.1 C。I 上图:(CpGme, X) 对的剂量反应曲线。下图:DNMT3A 脉冲强度与 DNA 甲基化等级 (CpGme) 之间的剂量反应曲线。脉冲强度通过增加其高度来增加。参见 SI 图 SM.1 D 和 SM.3。J 系统基因表达的平稳概率分布,由 SI 表 SM.1 和 SM.4 中列出的反应表示,参数值在 SI 第 S.9.3 节中给出。K 系统在 t = 28 天后的基因表达概率分布,如图 J 所示,参数值和初始条件在 SI 第 S.9.4 节中给出。参见 SI 图 SM.1 B 和 SM.2。在图 I 和 J 中,DNMT3A 动力学被建模为随时间呈指数下降的脉冲(参见第 S.1.1 节 - SI 方程 (SM.7))。在我们的模型中,ε (ζ) 是衡量基础(招募)擦除率与每次修饰的自催化率之间比率的参数。参见 SI 图 SM.1 E 和 SM.3。
Platon Megagiannis, 1,11 Yuan Mei, 2,3,11 Rachel E. Yan, 4,5 Lin Yuan, 1 Jonathan J. Wilde, 6,7 Hailey Eckersberg, 1 Rahul Suresh, 1 Xinzhu Tan, 1 Hong Chen, 1 W. Todd Farmer, 8 Kuwook Cha, 9 Phuong Uyen Le, 1 Helene Catoire, 1 Daniel Rochefort, 1 Tony Kwan, 10 Brian A. Yee, 3 Patrick Dion, 1 Arjun Krishnaswamy, 9 Jean-Francois Cloutier, 1 Stefano Stifani, 1 Kevin Petrecca, 1 Gene W. Yeo, 3 Keith K. Murai, 8 冯国平, 6,7 Guy A. Rouleau, 1 Trey Ideker, 2, * Neville E. Sanjana, 4,5 和扬州1,12,*1加拿大魁北克省蒙特利尔市麦吉尔大学医学与健康科学学院蒙特利尔神经病学研究所医院神经内科和神经外科系 2 美国加利福尼亚州圣地亚哥市加利福尼亚大学圣地亚哥分校医学系遗传学分部 3 美国加利福尼亚州拉霍亚市加利福尼亚大学圣地亚哥分校基因组医学研究所干细胞项目细胞和分子医学系 4 美国纽约州纽约纽约基因组中心 5 美国纽约州纽约大学生物系 6 美国马萨诸塞州剑桥市麻省理工学院 (MIT) 麦戈文脑研究所脑与认知科学系 7 美国马萨诸塞州剑桥市麻省理工学院和哈佛大学布罗德研究所斯坦利精神病学研究中心 8 加拿大魁北克省蒙特利尔市蒙特利尔综合医院麦吉尔大学健康中心研究所脑修复和综合神经科学项目神经科学研究中心加拿大魁北克省蒙特利尔市麦吉尔大学医学与健康科学学院生理学系 10 加拿大魁北克省蒙特利尔市麦吉尔大学麦吉尔基因组中心和人类遗传学系 11 这些作者贡献相同 12 主要联系人 *通信地址:tideker@ucsd.edu (TI)、yang.zhou7@mcgill.ca (YZ) https://doi.org/10.1016/j.celrep.2024.114637