染色质是携带DNA序列的基因组的物理底物,并确保其在细胞核中的适当功能和调节。虽然在编程的细胞过程(例如开发)过程中染色质的动力学知之甚少,但染色质在经验依赖性功能中的作用仍未得到很好的定义。积累的证据表明,在脑细胞中,环境刺激可以触发可能影响未来转录程序的染色质结构和三维(3D)组织的长期变化。本综述描述了最新发现,表明染色质在细胞记忆中起着重要作用,尤其是在维持大脑中先前活性痕迹中。受到免疫和上皮细胞发现的启发,我们讨论了潜在的机制及其对健康和疾病中经验依赖性转录调控的影响。我们通过提出染色质的整体观点作为分子底物的整体观点,以整合和同化环境信息,这可能构成未来研究的概念基础。
。cc-by-nc-nd 4.0国际许可证(未获得同行评审证书)获得的是作者/资助者,他已授予Biorxiv授予Biorxiv的许可,以永久显示预印本。是
后唑启动子富集于次级DNA结构形成基序中,例如G-四链体(G4S)。在这里,我们描述了“ G4Access”,这是一种通过核酸酶消化与开放染色质相关的分离和序列G4的方法。g4Access是抗体和交联的非依赖性和富集的计算预测G4S(PG4S),其中大多数在体外得到了证实。使用人和小鼠细胞中的G4ACCESS,我们鉴定出与核小体排除和启动子转录相关的细胞类型的G4富集。G4ACCESS允许测量G4配体处理后G4曲目使用的变化,HDAC和G4解旋酶抑制剂。将G4ACCESS应用于来自相互杂交小鼠交叉的细胞表明G4在控制活动印迹区域中的作用。一致地,我们还观察到G4ACCESS峰是未甲基化的,而PG4S的甲基化与DNA上的核小体重新定位相关。总体而言,我们的研究为研究细胞动力学的G4提供了一种新工具,并突出了它们与开放染色质,转录及其对DNA甲基化的拮抗作用的关联。
胶质母细胞瘤(GBM)是最致命的脑癌,GBM干细胞(GSC)驱动治疗性耐药性和复发性。靶向GSC提供了预防肿瘤复发和改善预后的有希望的策略。我们识别SUV39H1,一种组蛋白-3,赖氨酸-9甲基转移酶,对于GSC维持和GBM进展至关重要。SUV39H1在GBM中被上调,单细胞RNA-Seq由于超增强剂介导的激活而在GSC中的表达主要显示。GSC中Suv39H1的敲低损害了它们的增殖和茎。 全细胞RNA-seq分析表明,SUV39H1调节G 2 /M细胞周期进展,干细胞维持和GSC中的细胞死亡途径。 通过将RNA-Seq数据与ATAC-SEQ数据集成在一起,我们进一步证明了SUV39H1的敲低改变了与这些途径相关的关键基因中的染色质可及性。 Chaetocin是SUV39H1抑制剂,模仿SUV39H1敲低的作用,将GSC的茎和敏化细胞降低到Temozolomide,这是标准GBM化学疗法。 在患者衍生的异种移植模型中,靶向SUV39H1抑制了GSC驱动的肿瘤生长。 在临床上,高SUV39H1表达与胶质瘤预后不良相关,支持其作为治疗靶点的相关性。 这项研究将SUV39H1确定为GSC维护的关键调节剂,并且是改善GBM治疗和患者结局的有前途的治疗靶标。GSC中Suv39H1的敲低损害了它们的增殖和茎。全细胞RNA-seq分析表明,SUV39H1调节G 2 /M细胞周期进展,干细胞维持和GSC中的细胞死亡途径。通过将RNA-Seq数据与ATAC-SEQ数据集成在一起,我们进一步证明了SUV39H1的敲低改变了与这些途径相关的关键基因中的染色质可及性。Chaetocin是SUV39H1抑制剂,模仿SUV39H1敲低的作用,将GSC的茎和敏化细胞降低到Temozolomide,这是标准GBM化学疗法。在患者衍生的异种移植模型中,靶向SUV39H1抑制了GSC驱动的肿瘤生长。在临床上,高SUV39H1表达与胶质瘤预后不良相关,支持其作为治疗靶点的相关性。这项研究将SUV39H1确定为GSC维护的关键调节剂,并且是改善GBM治疗和患者结局的有前途的治疗靶标。
hal是一个多学科的开放访问档案,用于存款和传播科学研究文件,无论它们是否已发表。这些文件可能来自法国或国外的教学和研究机构,也可能来自公共或私人研究中心。
带有评论[PZ1]:也许从转录调节到重组的过渡更加顺利,您可以写出,这种“本地招聘”不仅导致了基因的转录,而且还会影响减数分裂的交叉形成
1。S. Iyer,R。M。Gaikwad,V。Subba-Rao,C。D。Woodworth和I. Sokolov,“原子力显微镜检测到正常和癌细胞表面刷的差异”,NAT。纳米技术。4(6),389–393(2009)。2。H. Knecht和S. Mai,“端粒和核结构的3D成像:基于3D纳米形态的诊断的新兴工具”,J。单元格。生理学。226(4),859–867(2011)。3。H. Subramanian,P。Pradhan,Y。Liu,I。R. Capoglu,X。Li,J。D. Rogers,A。Heifetz,A。Heifetz,D。Kunte,H。K. Roy,A。Taflove,A。Taflove和V. Backman,“用于检测组织学无效的纳米级后果的光学方法论,对生物学细胞进行了遗传替代。natl。学院。SCI。 U.S.A. 105(51),20118–20123(2008)。 4。 H. Subramanian, H. K. Roy, P. Pradhan, M. J. Goldberg, J. Muldoon, R. E. Brand, C. Sturgis, T. Hensing, D. Ray, A. Bogojevic, J. Mohammed, J. S. Chang, and V. Backman, “Nanoscale cellular changes in field carcinogenesis detected by partial wave spectroscopy,” Cancer Res. 69(13),5357–5363(2009)。 5。 R。K. Bista,T。A. Brentnall,M。P. Bronner,C。J. Langmead,R。E. Brand和Y. Liu,“使用非直肠直肠上皮细胞的光学标志物来鉴定患有溃疡性结肠炎相关的肿瘤的患者,” 肠dis。 17(12),2427–2435(2011)。 6。 K。J. Chalut,J。H. Ostrander,M。G. Giacomelli和A. Wax,“亚细胞结构的光散射测量可提供化学疗法诱导的凋亡的无创早期检测”,癌症Res。SCI。U.S.A. 105(51),20118–20123(2008)。 4。 H. Subramanian, H. K. Roy, P. Pradhan, M. J. Goldberg, J. Muldoon, R. E. Brand, C. Sturgis, T. Hensing, D. Ray, A. Bogojevic, J. Mohammed, J. S. Chang, and V. Backman, “Nanoscale cellular changes in field carcinogenesis detected by partial wave spectroscopy,” Cancer Res. 69(13),5357–5363(2009)。 5。 R。K. Bista,T。A. Brentnall,M。P. Bronner,C。J. Langmead,R。E. Brand和Y. Liu,“使用非直肠直肠上皮细胞的光学标志物来鉴定患有溃疡性结肠炎相关的肿瘤的患者,” 肠dis。 17(12),2427–2435(2011)。 6。 K。J. Chalut,J。H. Ostrander,M。G. Giacomelli和A. Wax,“亚细胞结构的光散射测量可提供化学疗法诱导的凋亡的无创早期检测”,癌症Res。U.S.A. 105(51),20118–20123(2008)。4。H. Subramanian, H. K. Roy, P. Pradhan, M. J. Goldberg, J. Muldoon, R. E. Brand, C. Sturgis, T. Hensing, D. Ray, A. Bogojevic, J. Mohammed, J. S. Chang, and V. Backman, “Nanoscale cellular changes in field carcinogenesis detected by partial wave spectroscopy,” Cancer Res.69(13),5357–5363(2009)。5。R。K. Bista,T。A. Brentnall,M。P. Bronner,C。J. Langmead,R。E. Brand和Y. Liu,“使用非直肠直肠上皮细胞的光学标志物来鉴定患有溃疡性结肠炎相关的肿瘤的患者,”肠dis。17(12),2427–2435(2011)。6。K。J. Chalut,J。H. Ostrander,M。G. Giacomelli和A. Wax,“亚细胞结构的光散射测量可提供化学疗法诱导的凋亡的无创早期检测”,癌症Res。69(3),1199–1204(2009)。7。I. Itzkan,L。Qiu,H。Fang,M。M. Zaman,E。Vitkin,I。C. Ghiran,S。Salahuddin,M。Modell,C。Andersson,L。M. Kimerer,P。B. Cipolloni,P。B. Cipolloni,K。H. H. Lim,S。D. Freedman,S。D. Freedman,I.Bigio,I.Bigio,I.B.Sachs,E。B. Sachs,E。B. Hanlon,L.Hanlon,l. t. t. t. t. t. t. pering and L. T.光谱显微镜在没有外源标签的活细胞中监测细胞器”。natl。学院。SCI。 U.S.A. 104(44),17255–17260(2007)。 8。 Z. Wang,K。Tangella,A。Balla和G. Popescu,“组织折射率为疾病标志”,J。Biomed。 选择。 16(11),116017(2011)。 9。 G. Popescu,细胞和组织的定量相成像,McGraw-Hill Biophotonics(McGraw-Hill,2011年),pp。 xx,362 p。SCI。U.S.A. 104(44),17255–17260(2007)。 8。 Z. Wang,K。Tangella,A。Balla和G. Popescu,“组织折射率为疾病标志”,J。Biomed。 选择。 16(11),116017(2011)。 9。 G. Popescu,细胞和组织的定量相成像,McGraw-Hill Biophotonics(McGraw-Hill,2011年),pp。 xx,362 p。U.S.A. 104(44),17255–17260(2007)。8。Z. Wang,K。Tangella,A。Balla和G. Popescu,“组织折射率为疾病标志”,J。Biomed。 选择。 16(11),116017(2011)。 9。 G. Popescu,细胞和组织的定量相成像,McGraw-Hill Biophotonics(McGraw-Hill,2011年),pp。 xx,362 p。Z. Wang,K。Tangella,A。Balla和G. Popescu,“组织折射率为疾病标志”,J。Biomed。选择。16(11),116017(2011)。9。G. Popescu,细胞和组织的定量相成像,McGraw-Hill Biophotonics(McGraw-Hill,2011年),pp。xx,362 p。
专业上皮对于维持循环至关重要,并报告说,上皮中KEAP1的缺失将导致小鼠肾结通(Noel等,2016)。但尚不清楚什么是主要贡献者,不同细胞类型之间的协同相互作用可能对维持肾脏功能至关重要。许多基因涉及维持正常肾功能,例如CLMP和GFRA3。以前的一个在肾脏发育中起重要作用,它的缺失将导致严重的双侧肾积水(Rathjen和Jüttner,2023年)。后者是GDNF家族受体的成员,GDNF是一种分泌的分子,并参与输尿管萌芽(Uetani and Bouchard,2009年)。其他转录因子,例如gata3,lim1,对于肾脏结构也很重要(Chia等,2011)(Boualia等,2013)。小鼠胚胎中GATA3突变会在出生时引起肤色,这表明GATA3因子是尿路突变所必需的(Chia等,2011)。FOXF1是肺发育的另一个因素,也发现突变导致肾结通(BZDęGA等,2023)。通过肾积水中探索了几乎没有潜在的关键基因或转录因子,潜在的遗传机制仍在进一步研究。最近的研究表明,调节元件中染色质状态的变化在基因表达中起着至关重要的作用,并可能导致严重疾病(Mirabella等,2016)(Klemm等,2019)。尽管如此,我们仍然对肤色期间异常组织和正常组织之间染色质状态的改变的了解有限。全面理解肤色中的基因表达和相关调节网络将有助于我们识别发病机理并发现疾病的新疗法靶标。我们试图在这项研究中检测正常和肾脏症之间的差异表达基因(DEG),然后探索疾病的表观遗传变化,包括ATAC-SEQ检测到的DNA甲基化预测和相关的调节元件,检测到了差异性可及的区域(DARS)(图1A)。为了可视化Hub-Gene在肾积水中,我们还通过String构建了蛋白质 - 蛋白质网络(PPI)。为了验证获得的DEGS和DARS之间的潜在关系,我们进一步检测到DEG和DARS之间的染色质结构,试图在肾结通中填充调节机制。
真核基因组以3D方式组织,并且在这些量表中的每一种中作用的不同机制都会有助于转录调节。但是,3D染色质结构中的大型单细胞变异性是了解如何以稳健和有效的方式在细胞类型之间差异调节转录的挑战。在这里,我们描述了3D染色质结构的不同机制有助于细胞类型特异性的转录调节。令人兴奋的是,几种能够在其天然组织环境中测量单个细胞中3D染色质构象和转录的新方法,或者检测顺体调节相互作用的动力学,开始允许对染色质结构噪声进行定量解剖,并将其与不同细胞类型之间的转录相关联。
抽象染色质组织是干细胞多能和分化的关键因素。然而,尚未探索增强子循环蛋白LDB1在干细胞中的作用。我们使用CRISPR/CAS9编辑产生了LDB1( - / - )胚胎干细胞(ESC),并观察到LDB1损失后关键干细胞因子SOX2和KLF4的降低。源自LDB1( - / - )ESC的胚胎体(EB)显示出谱系特异性标记的表达降低,并且能力受损能够经历末端分化为红细胞。差异基因表达,包括LIN28介导的自我更新途径基因,在WT和LDB1( - / - )ESC和EB之间观察到,但在分化为成红细胞细胞后最为明显。LDB1占据了超级增强剂,包括多能基因的超级增强剂,以及多能因素。LDB1损失导致ESC和EB中的全球染色质可及性降低。有条件的LDB1缺陷小鼠在骨髓细胞上显示造血干细胞标记降低,LIN28途径的失调。因此,LDB1功能对于ESC和EB发育至关重要,在分化为红细胞时变得越来越重要。关键字: