MADRID玛格丽塔·萨拉斯生物学研究中心(CIB-CSIC)的完整性实验室Rodrigo Bermejo小组致力于理解复制叉保护机制的功能结构。DNA复制是一个引人入胜的过程,对生命和有机体的发育至关重要,但发生在脆弱的结构(复制叉)上,必须协商硬重复的位点,容易崩溃并引起突变和染色体异常,从而促进癌症。为了了解关键重置因子如何与其他关键的染色体过程协调复制以保护受到挑战的叉子,我们采用了一种多学科方法,结合了链特异性基因组学,分子遗传学和基于AI的蛋白质相互作用预测在萌芽的酵母模型中。
评估人类基因组编辑产品安全性的一个重要标准是验证基因组完整性。这包括对大量插入或缺失、外源 DNA 整合以及致癌性或插入诱变可能性的评估。在本研究中,我们介绍了 SAFER-Detection(高效重排检测的选择性扩增)。SAFER-Detection 是一种基于标记和下一代测序的方法,旨在以单碱基分辨率定量检测染色体重排断点。该方法能够对由可编程核酸酶(如 CRISPR/Cas 和 TALEN)进行的靶向和脱靶编辑导致的重排进行分类。SAFER-Detection 使用 Cas9 和 CCR5 向导 RNA,可轻松识别靶位点 (CCR5) 与附近同源物 (CCR2) 中的脱靶或同源位点之间的染色体内缺失、插入和倒位。CCR5 靶位点与 chr1 和 chr13 上的脱靶位点之间的染色体间易位也被捕获并通过 PCR 进一步验证。SAFER-Detection 在检测由脱靶活动或同源重组介导的染色体内和染色体间重排方面表现出高灵敏度,适用于含有低细胞数的样本。当与灵敏的脱靶提名技术(如 ONE-seq)结合使用时,SAFER 检测提供了一种评估治疗性基因组编辑中染色体重排风险的宝贵方法。
头三个月的非侵入性产前测试(NIPT)通常在11至14周之间进行检查以检查是否有染色体异常,并且可以在单个合并测试或多步过程中完成。从孕妇那里取的血液样本,分析了自由β-Human绒毛膜促性腺激素(HCG)和与妊娠相关的血浆蛋白A(PAPP-A)水平。此外,可以进行超声检查以测量颈部半透明(胎儿背面和上覆的皮肤之间的空间厚度)。这些测试的结果(以及母亲年龄的考虑)用于计算胎儿染色体疾病的特定风险。如果这些结果证明了胎儿异常的显着概率,则可以进行侵入性测试,例如羊膜穿刺术或绒毛膜绒毛采样(CVS)。
自发染色体重排 (CR) 在物种形成、基因组进化和作物驯化中起着至关重要的作用。为了能够利用 CR 的育种潜力,人们开始通过 X 射线照射将染色体片段化,从而进行植物染色体工程。随着 CRISPR/Cas 系统的兴起,人们可以高效地在任意染色体位置诱导双链断裂 (DSB)。这使得预先设计的染色体工程达到了全新的水平。可以通过诱导染色体易位来打破特定基因之间的遗传连锁。可以恢复抑制遗传交换的自然倒位以进行育种。此外,人们已经开发出各种通过缩小常规标准 A 染色体或额外 B 染色体来构建微型染色体的方法,这些方法可以作为未来植物生物技术的载体。最近,人们可以构建一个功能性的合成着丝粒。此外,人们已经建立了不同的基因组单倍体化方法,其中一些方法基于着丝粒操作。未来,我们期望看到更复杂的重组,这些重组可以与重组酶等先前开发的工程技术相结合。染色体工程可能有助于重新定义遗传连锁群、改变染色体数量、在微型载货染色体上堆叠有益基因,或建立遗传隔离以避免杂交。
开发有关细胞结构,染色体形态,细胞分裂机制,蛋白质提取,DNA,从植物来源中的RNA,与遗传材料传播和分布有关的遗传问题的概念。
科学研究表明,微管蛋白在人体不同部位的肿瘤中都有表达。III 类 b 型微管蛋白 (TUB b 3 ) 是与晚期肿瘤相关的最主要的微管蛋白。38 蛋白质研究表明,微管蛋白在细胞行为中起着至关重要的作用,是微管的结构单位。着丝粒可以作为癌症进展的指标进行监测;这种结构是一种动态元素,可组织负责细胞分裂的机制。着丝粒由一对中心粒组成,纺锤体和星状微管由此起源。癌细胞通常具有额外的着丝粒和染色体不稳定性。着丝粒的这些数值和结构变化是人类癌症和染色体疾病的有用指标和标志。人体组织含有各种
在模型植物系统中,b-酮酰基-[酰基载体蛋白]合酶 1 (KASI) 基因已被证明对蔗糖转化为油至关重要。先前的一项研究描述了与相互染色体易位相关的形态和种子组成表型,这种易位破坏了大豆中的一种 KASI 基因。这项研究的主要发现包括种子起皱表型、种子蔗糖增加、种子油减少和易位传播频率低。然而,仍不清楚这些表型中的哪一个(如果有的话)是由 KASI 基因功能丧失直接引起的,而不是染色体易位或其他相关因素。在本研究中,使用 CRISPR/Cas9 诱变来生成该基因的多个敲除等位基因,以及一个符合读框的等位基因。对这些大豆植物的形态、种子组成性状和遗传传递进行了评估。我们的结果表明,CRISPR/Cas9 突变体表现出与染色体易位突变体相同的表型,证实了观察到的表型是由基因功能丧失引起的。此外,与含有纯合敲除突变的植物相比,含有纯合框内突变的植物表现出相似的表型。这一结果表明,框内突变体中丢失的氨基酸对于基因的正常功能至关重要。为了产生新的种子组成表型,该基因的框内编辑可能需要靶向不太重要和/或进化保守的结构域。
研究成果の概要(英文):我们在分析中包括了7个GAPP家族(16名患者)。中位年龄为43.5(18-84)岁,男性为7。8例患者患有胃癌(I/II/IV期= 3:1:4)。 用直接测序方法对APC基因进行了种系分析,因此14例患者的点突变为APC外显子1b。 基因组癌变分析分析正常粘膜,发育异常和腺癌的活检标本表明,基因A,B和C基因与GAPPS患者的致癌作用有关。 特别是在每个标本中都会散布基因A,因此揭示了与癌变的关系。 另一方面,染色体分析表明,染色体异常也与癌变有关。 建立了具有特定生长因子的类器官。8例患者患有胃癌(I/II/IV期= 3:1:4)。用直接测序方法对APC基因进行了种系分析,因此14例患者的点突变为APC外显子1b。基因组癌变分析分析正常粘膜,发育异常和腺癌的活检标本表明,基因A,B和C基因与GAPPS患者的致癌作用有关。特别是在每个标本中都会散布基因A,因此揭示了与癌变的关系。另一方面,染色体分析表明,染色体异常也与癌变有关。建立了具有特定生长因子的类器官。
图1。核骨质表明802-30F细胞在基因组上是稳定的。*野生型802-30F细胞(通道19)的Karyostat结果表明基因组完整性已维持。全基因组视图以一个高级副本编号显示了所有体细胞和性染色体。平滑的信号图(右y轴)是log2比的平滑,它描述了微阵列上探针的信号强度。一个值为2表示普通拷贝数状态(CN = 2)。3的值代表染色体增益(CN = 3)。1的值表示染色体损失(CN = 1)。粉红色,绿色和黄色表示每个单独的染色体探针的原始信号,而蓝色信号表示用于识别副本数和畸变的归一化探针信号(如果有)。*改编自Thermo Fisher Scientific的描述。
简介:乙型肝炎病毒 (HBV) 可能通过多种机制导致肝细胞癌 (HCC) 的发展,包括病毒整合到宿主基因组中以及诱发持续性肝脏炎症。在 HBV 相关 HCC 中,病毒整合可分别通过插入诱变和染色体重排促进局部和远处癌症驱动基因改变。然而,对于早期慢性乙型肝炎 (CHB) 患者在发展为 HCC 之前的这些整合事件知之甚少。抗病毒疗法对病毒整合负担和肝内炎症的影响也未得到很好的描述。在本研究中,我们描述了肝内 HBV 整合和 HBV 相关染色体易位,以及在使用抗病毒药物替诺福韦二吡呋酯富马酸盐 (TDF) 治疗前后血清丙氨酸氨基转移酶 (ALT) 轻微升高的 CHB 患者的肝脏免疫微环境。