摘要:在此,我们在感应方程(麦克斯韦方程之一)中引入了一个附加项。应用标量和矢量势的相关拉格朗日形式适用于此修改的麦克斯韦方程。在哈密顿原理的框架内,我们能够推导出场变量电场 E 和磁感应 B 具有负“质量项”的克莱因-戈登方程。我们可以从方程的数学结构得出结论,出现了排斥相互作用。可以计算出当前情况下的惠勒传播子,由此可以讨论场的时间演化。尽管这些方程具有快子解,但结果符合因果关系原理。根据该理论,场中可能会出现自发电荷分离过程。
在最后几个讲座中,我们看到使用量子信息可以通过无条件安全性(假设经过认证的通道)来实现某个密码任务,即钥匙交换。然而,其他常见任务,包括承诺,投币和遗忘转移,证明不能。在接下来的几次讲座中,我们将换档,转移到一个诚实的政党是经典的世界,但对手是量子。这被称为量词后密码学。我们将重新访问经典的加密原语和任务,并查看在这样的世界中可以实现哪些的,以及到达那里所需的工具。特别是,我们将看到量词后的安全承诺,零知识和知识协议证明。但首先,让我们从经典密码学入门开始。
量子计算硬件的发展面临着这样的挑战:当今的量子处理器由 50-100 个量子比特组成,其运行范围已经超出了经典计算机的量子模拟范围。在本文中,我们证明,模拟经典极限可以成为一种有效的诊断工具,用于诊断量子信息硬件对混沌不稳定性的影响,从而有可能缓解这一问题。作为我们方法的试验台,我们考虑使用 transmon 量子比特处理器,这是一个计算平台,其中大量非线性量子振荡器的耦合可能会引发不稳定的混沌共振。我们发现,在具有 O(10)个 transmon 的系统中,经典和量子模拟会导致相似的稳定性指标(经典 Lyapunov 指数与量子波函数参与率)。然而,经典模拟的一大优势是它可以应用于包含多达数千个量子比特的大型系统。我们通过模拟所有当前的 IBM transmon 芯片(包括 Osprey 一代的 433 量子比特处理器以及具有 1121 个量子比特的设备(Condor 一代))展示了此经典工具箱的实用性。对于实际的系统参数,我们发现 Lyapunov 指数随系统规模而系统性地增加,这表明更大的布局需要在信息保护方面付出更多努力。
经典信号处理和非经典信号处理:信号的节奏 作者:Attaphongse Taparugssanagorn 本书首次出版于 2023 年 剑桥学者出版社 Lady Stephenson 图书馆,纽卡斯尔,NE6 2PA,英国 大英图书馆出版数据编目 本书的目录记录可从大英图书馆获取 版权所有 © 2023 Attaphongse Taparugssanagorn 保留本书的所有权利。 未经版权所有者事先许可,不得以任何形式或任何方式(电子、机械、影印、录制或其他方式)复制、存储在检索系统中或传播本书的任何部分。 ISBN (10):1-5275-2864-2 ISBN (13):978-1-5275-2864-2
Nielsen, Michael A. 和 Isaac Chuang。“量子计算和量子信息。” (2002)。Gottesman, Daniel。“量子计算机的海森堡表示。” arXiv preprint quant-ph/9807006 (1998)。
作者:AW Sheppard · 2019 · 被引用 13 次 — 人们基于实践伦理对生物防治实践进行了批评和辩护。实践伦理侧重于具体例子,说明如何...
saGsfied: • P is a finite set of possible plaintexts • C is a finite set of possible ciphertexts • K , the keyspace , is a finite set of possible keys • E is a finite set of encrypGon funcGons • D is a finite set of decrypGon funcGons • ∀ K ∈ K EncrypGon Rule : ∃ e K ∈E和decrypgon规则:∃dk∈D使得(e k:p→c),(d k:c→p)和∀x∈P,d k(e k(x))= x。
[1] Jimmy Lei BA,Jamie Ryan Kiros和Geoffrey E. Hinton。层归一化。2016。Arxiv:1607.06450 [Stat.ml]。[2] Nanxin Chen等。Wavegrad:估计波形产生的梯度。2020。Arxiv:2009.00713 [Eess.as]。[3]凯瑟琳·克罗森(Katherine Crowson)。在CIFAR-10上训练扩散模型。在线。2024。URL:https://colab.research.google.com/drive/1ijkrrv-d7bosclvkhi7t5docryqortm3。[4]凯瑟琳·克罗森(Katherine Crowson)。v-diffusion。在线。2024。URL:https: / / github。com/crowsonkb/v-diffusion-pytorch/blob/master/diffusion/utils.py。[5] Ekin D. Cubuk等。randaugment:实用的自动化数据增强,并减少了搜索空间。2019。Arxiv:1909.13719 [CS.CV]。 [6] Yann N. Dauphin等。 通过封闭式卷积网络进行语言建模。 2017。Arxiv:1612.08083 [CS.CL]。 [7] Mostafa Dehghani等。 通用变压器。 2019。Arxiv:1807.03819 [CS.CL]。 [8] Yilun Du和Igor Mordatch。 基于能量的模型中的隐性产生和概括。 2020。Arxiv:1903.08689 [CS.LG]。 [9] Ian J. Goodfellow等。 生成对抗网络。 2014。Arxiv:1406.2661 [Stat.ml]。 [10] Dan Hendrycks和Kevin Gimpel。 高斯错误线性单元(Gelus)。 2023。Arxiv:1606.08415 [CS.LG]。 [11] Jonathan Ho,Ajay Jain和Pieter Abbeel。 剥离扩散概率模型。 2020。Arxiv:2006.11239 [CS.LG]。2019。Arxiv:1909.13719 [CS.CV]。[6] Yann N. Dauphin等。通过封闭式卷积网络进行语言建模。2017。Arxiv:1612.08083 [CS.CL]。[7] Mostafa Dehghani等。通用变压器。2019。Arxiv:1807.03819 [CS.CL]。 [8] Yilun Du和Igor Mordatch。 基于能量的模型中的隐性产生和概括。 2020。Arxiv:1903.08689 [CS.LG]。 [9] Ian J. Goodfellow等。 生成对抗网络。 2014。Arxiv:1406.2661 [Stat.ml]。 [10] Dan Hendrycks和Kevin Gimpel。 高斯错误线性单元(Gelus)。 2023。Arxiv:1606.08415 [CS.LG]。 [11] Jonathan Ho,Ajay Jain和Pieter Abbeel。 剥离扩散概率模型。 2020。Arxiv:2006.11239 [CS.LG]。2019。Arxiv:1807.03819 [CS.CL]。[8] Yilun Du和Igor Mordatch。基于能量的模型中的隐性产生和概括。2020。Arxiv:1903.08689 [CS.LG]。[9] Ian J. Goodfellow等。生成对抗网络。2014。Arxiv:1406.2661 [Stat.ml]。[10] Dan Hendrycks和Kevin Gimpel。高斯错误线性单元(Gelus)。2023。Arxiv:1606.08415 [CS.LG]。[11] Jonathan Ho,Ajay Jain和Pieter Abbeel。剥离扩散概率模型。2020。Arxiv:2006.11239 [CS.LG]。[12] Jonathan Ho和Tim Salimans。无分类器扩散指南。2022。ARXIV:2207.12598 [CS.LG]。[13]安德鲁·霍华德(Andrew Howard)等人。搜索MobilenetV3。2019。Arxiv:1905.02244 [CS.CV]。[14] Andrew G. Howard等。 Mobilenets:用于移动视觉应用的有效卷积神经网络。 2017。Arxiv:1704.04861 [CS.CV]。 [15] Forrest N. Iandola等。 squeezenet:较小的参数和€0.5MB型号的Alexnet级准确性。 2016。Arxiv:1602.07360 [CS.CV]。 [16] Imagenet 64x64基准(图像生成)。 用代码的论文,2024。URL:https://paperswithcode.com/sota/image-generation-generation-en-on-imagenet-64x64。 [17] Sergey Ioffe和Christian Szegedy。 批次归一化:通过减少内部协变性转移来加速深层网络训练。 2015。Arxiv:1502.03167 [CS.LG]。 [18] Diederik P. Kingma和Jimmy Ba。 亚当:一种随机优化的方法。 2017。Arxiv:1412.6980 [CS.LG]。 [19] Diederik P. Kingma和Ruiqi Gao。 将扩散目标理解为具有简单数据增强的ELBO。 2023。Arxiv:2303.00848 [CS.LG]。 [20] Diederik P. Kingma等。 变化扩散模型。 2023。Arxiv:2107.00630 [CS.LG]。 [21] Zhenzhong Lan等。 albert:一个精简版的语言表示学习。 2020。Arxiv:1909.11942 [CS.CL]。 [22] Ilya Loshchilov和Frank Hutter。 重量衰减正则化。[14] Andrew G. Howard等。Mobilenets:用于移动视觉应用的有效卷积神经网络。2017。Arxiv:1704.04861 [CS.CV]。 [15] Forrest N. Iandola等。 squeezenet:较小的参数和€0.5MB型号的Alexnet级准确性。 2016。Arxiv:1602.07360 [CS.CV]。 [16] Imagenet 64x64基准(图像生成)。 用代码的论文,2024。URL:https://paperswithcode.com/sota/image-generation-generation-en-on-imagenet-64x64。 [17] Sergey Ioffe和Christian Szegedy。 批次归一化:通过减少内部协变性转移来加速深层网络训练。 2015。Arxiv:1502.03167 [CS.LG]。 [18] Diederik P. Kingma和Jimmy Ba。 亚当:一种随机优化的方法。 2017。Arxiv:1412.6980 [CS.LG]。 [19] Diederik P. Kingma和Ruiqi Gao。 将扩散目标理解为具有简单数据增强的ELBO。 2023。Arxiv:2303.00848 [CS.LG]。 [20] Diederik P. Kingma等。 变化扩散模型。 2023。Arxiv:2107.00630 [CS.LG]。 [21] Zhenzhong Lan等。 albert:一个精简版的语言表示学习。 2020。Arxiv:1909.11942 [CS.CL]。 [22] Ilya Loshchilov和Frank Hutter。 重量衰减正则化。2017。Arxiv:1704.04861 [CS.CV]。[15] Forrest N. Iandola等。squeezenet:较小的参数和€0.5MB型号的Alexnet级准确性。2016。Arxiv:1602.07360 [CS.CV]。[16] Imagenet 64x64基准(图像生成)。用代码的论文,2024。URL:https://paperswithcode.com/sota/image-generation-generation-en-on-imagenet-64x64。[17] Sergey Ioffe和Christian Szegedy。批次归一化:通过减少内部协变性转移来加速深层网络训练。2015。Arxiv:1502.03167 [CS.LG]。[18] Diederik P. Kingma和Jimmy Ba。亚当:一种随机优化的方法。2017。Arxiv:1412.6980 [CS.LG]。[19] Diederik P. Kingma和Ruiqi Gao。将扩散目标理解为具有简单数据增强的ELBO。2023。Arxiv:2303.00848 [CS.LG]。[20] Diederik P. Kingma等。变化扩散模型。2023。Arxiv:2107.00630 [CS.LG]。[21] Zhenzhong Lan等。albert:一个精简版的语言表示学习。2020。Arxiv:1909.11942 [CS.CL]。[22] Ilya Loshchilov和Frank Hutter。重量衰减正则化。2019。Arxiv:1711.05101 [CS.LG]。[23] Preetum Nakkiran等。深度下降:更大的模型和更多数据损害。2019。Arxiv:1912.02292 [CS.LG]。[24] Alex Nichol和Prafulla Dhariwal。改进了扩散概率模型。2021。Arxiv:2102.09672 [CS.LG]。[25] Aaron van den Oord,Nal Kalchbrenner和Koray Kavukcuoglu。像素复发性神经网络。2016。Arxiv:1601.06759 [CS.CV]。[26] Prajit Ramachandran,Barret Zoph和Quoc V. Le。搜索激活功能。2017。Arxiv:1710.05941 [CS.NE]。 [27] Danilo Jimenez Rezende和Shakir Mohamed。 差异推断与归一化流量。 2016。Arxiv:1505.05770 [Stat.ml]。2017。Arxiv:1710.05941 [CS.NE]。[27] Danilo Jimenez Rezende和Shakir Mohamed。差异推断与归一化流量。2016。Arxiv:1505.05770 [Stat.ml]。
我们提供了一个基于经典电磁学的理论框架,以描述Fabry-Pérot腔的光学特性,并用多层和线性手性材料填充。我们发现了转移 - 矩阵,散射矩阵和绿色功能方法之间的正式联系,以计算依赖极化的光学传播和空腔模型的圆形二色性信号。我们展示了诸如洛伦兹的互惠和时间反向对称性之类的一般对称性如何限制此类腔的建模。我们采用这种方法来通过数值和分析研究,由金属或螺旋性的介电光子晶体镜制成的各种Fabry-Pérot腔的特性。在后一种情况下,我们根据在镜面界面上反映的电磁波的部分螺旋性保存分析了手性腔极性的发作。我们的方法与设计创新的Fabry-Pérot腔有关手性传感和探测腔体模化的立体化学相关。