新兴的超低覆盖范围单细胞DNA测序(SCDNA-SEQ)技术已经实现了肿瘤内拷贝数畸变(CNA)的高分辨率进化研究。由于这些测序技术非常适合鉴定CNA,由于测序的协调性均匀性,但覆盖范围的稀疏性对研究单核苷酸变体(SNV)的研究构成了挑战。为了最大程度地提高越来越多的超低覆盖范围SCDNA-SEQ数据并获得对肿瘤演化的全面了解,也必须分析SNV从同一组肿瘤细胞中的演变。我们提出了P植物,这是一种从肿瘤的超低覆盖scDNA-seq数据中推断克隆树的方法。基于概率模型,我们的方法通过识别肿瘤史上的关键进化事件来递归对数据进行分区。我们在模拟数据以及两个真实数据集上证明了P生物的性能,发现P Hirtilizer有效地利用了数据中固有的拷贝数信号,以更准确地揭示了与以前的方法相比的克隆结构和基因型。可用性:https://github.com/elkebir-group/phertilizer
作物疾病大流行通常是由无性繁殖的植物病原体的克隆谱系驱动的。尽管遗传变异有限,并且在没有性重组的情况下,这些克隆病原体如何不断地适应其宿主。在这里,我们揭示了在爆炸真菌斑点的大流行克隆谱系中的水平染色体转移的多个实例(Syn。pyricularia)oryzae。我们确定了一个Hori Zontly转移的1.2MB辅助迷你染色体,该小染色体在大米爆炸真菌谱系和谱系感染印度鹅(Eleusine Indiona)的Oryzae分离株之间非常保守,这是一种经常生长的野生草,在耕种陶瓷毛皮的附近生长。此外,我们表明,这种迷你染色体是通过克隆大米爆炸株通过至少九个不同的转移事件水平获取的。这些发现建立了水平的迷你染色体转移,作为促进不同宿主相关的爆炸真菌谱系中遗传交换的一种机制。我们提出,感染野草的爆炸真菌是遗传储层,这些储层驱动了困扰谷物作物的大流行克隆谱系的基因组进化。
碱基编辑技术能够在哺乳动物细胞的目标基因组位点引入点突变,其效率和精度高于采用 DNA 双链断裂的传统基因组编辑方法,例如锌指核酸酶 (ZFN)、转录激活因子样效应核酸酶 (TALEN) 和 CRISPR-Cas9(成簇的规律间隔的短回文重复序列-CRISPR 相关蛋白 9)系统。这可以更省时省资源地生成单核苷酸变异同源细胞系(即基因组序列仅在单个编辑核苷酸处彼此不同的细胞系)。这些单核苷酸变异克隆细胞系是评估遗传变异在天然细胞环境中的功能作用的有力工具。因此,碱基编辑可以在受控实验室环境中促进基因型到表型的研究,可用于基础研究和临床应用。在这里,我们提供优化的协议(包括实验设计、方法和分析)来设计碱基编辑构建体、转染粘附细胞、批量量化碱基编辑效率以及生成单核苷酸变体克隆细胞系。
摘要 — 结构磁共振成像 (sMRI) 已研究了多种神经系统疾病,并且已将其映射到大脑的不健康区域。必须尽快确定阿尔茨海默病 (AD) 患者,以便开始治疗。最近的研究集中于应用机器学习 (ML) 技术来分割大脑结构并对 AD 进行分类。克隆选择 (CS) 理论有效地实现了分类和优化的目标。自适应克隆选择 (ACS) 技术用于将 sMRI 扫描分为多个类别,例如认知正常 (CN)、轻度认知障碍 (MCI) 和纯 AD 类别。提出的 ACS 描述了免疫反应的基本特征。这为抗原只能在接收它的细胞子集内成熟而不是在身体其他部分成熟的假设提供了支持。与依赖突变的进化计算相比,这种方法擅长关注克隆扩增和亲和力的发展。所提出的 ACS 技术从克隆扩增概念中引入了基本标准,有助于创建用于识别上述 CN、MCI 和 AD 模板匹配的高效策略。所提出的 ACS 方法在分类和检测准确度方面比最先进的方法高出约 99%。关键词 — 阿尔茨海默病 (AD)、磁共振成像 (sMRI)、人工免疫系统 (AIS)、增强模糊 K 最近邻 (EFKNN)、自适应神经模糊推理系统 (ANFIS)
1 巴黎萨克雷大学,古斯塔夫鲁西,INSERM U981,维尔瑞夫; 2 药物开发部(DITEP),Gustave Roussy,维尔瑞夫; 3 维尔瑞夫古斯塔夫鲁西肿瘤医学系; 4 PRISM 研究所,Gustave Roussy,维尔瑞夫; 5 巴黎萨克雷大学 INSERM 生物统计学和流行病学办公室,Gustave Roussy,Oncostat U1018,标记为 Ligue Contre le Cancer,Villejuif; 6 实验和转化病理学平台(PETRA)、基因组平台 - 分子生物病理学单位(BMO)和生物资源中心、AMMICA、INSERM US23/CNRS UMS3655、Gustave Roussy、巴黎萨克雷大学、维尔瑞夫; 7 维尔瑞夫古斯塔夫鲁西医学生物学和病理学系; 8 介入放射学系,Gustave Roussy,维尔瑞夫; 9 法国马赛艾克斯马赛大学、法国国立科学研究院、法国国家健康与医学研究院、法国马赛临床医学研究中心
碳青霉烯是广谱抗生素,在治疗由革兰氏阴性细菌引起的严重感染中起主要作用。碳青霉烯型肠杆菌科的全球传播正在成为一个公共卫生问题(Jamal等,2020)。肠杆菌科中碳青霉烯耐药性的升高主要是由于获得了碳青霉烯 - 氢化酶(Carbapenemases)(Tilahun等,2021)。编码碳青霉酶的基因可以掺入细菌染色体中,但主要位于移动元素上,例如在细菌菌株和物种之间可转移的质粒或转座子(San Millan,2018年)。因此,临床暴发通常很复杂,涉及克隆,质粒或转座子的基因传播的各种因素(Brehony等,2019)。碳青霉素型OXA-48首次出现在2000年代中期,此后在许多欧洲国家和世界各地都发现了(Hidalgo等,2019)。在法国,它是产生甲状腺素酶的肠杆菌科(CPE)中最常见的酶(Emeraud等,2020)。BLA OXA-48基因被认为源自环境Shewanella菌株的染色体(Tacão等,2018)。它在物种之间的快速传播是由于其在转座子中筑巢(TN 1999),该转座主要由含有/M型质粒携带(Shankar等,2020)。控制医院病房中的暴发是必要的,以限制多药耐药细菌的传播。CPE对患者的定殖可以干扰适当的护理。fmt是CPE定殖也可能影响癌症患者化学疗法的开始,因为它与接受诱导化疗的患者的存活率较低有关(Ballo等,2019)。因此,已经实施了一种恢复健康的肠道菌群并消除CPE储层(例如粪便菌群移植(FMT))的策略。
人类肿瘤的自然病史和治疗反应各不相同,这在一定程度上是由于遗传和转录组异质性造成的。在临床实践中,单点针吸活检用于对这种多样性进行采样,但癌症生物标志物可能会因单个肿瘤内的空间基因组异质性而混淆。在这里,我们通过分析 TRACERx 研究中 184 名肺腺癌患者的 450 个肿瘤区域的多区域全外显子组和 RNA 测序数据,研究克隆表达基因作为采样偏差问题的解决方案。我们前瞻性地验证了克隆表达生物标志物结果风险相关克隆肺表达 (ORACLE) 与临床病理风险因素以及 I 期疾病的生存关联。我们扩展了我们对机制的理解,发现克隆转录信号在组织侵袭之前是可检测到的,可作为致命转移性克隆的分子指纹并预测化疗敏感性。最后,我们发现 ORACLE 将遗传进化措施(包括染色体不稳定性)编码的预后信息总结为简洁的 23 个转录本检测。
2。ICREA,加泰罗尼亚研究与高级研究机构巴塞罗那,西班牙10号加泰罗尼亚。11 12 *这些作者对这项工作也同样贡献13#铅接触:alejo.rodriguez-fraticelli@irbbarcelona.org 14 15摘要:16 17癌细胞,即使患有相同18个突变的患者,癌细胞也显示出广泛的表型变化。原始细胞的差异提供了潜在的解释,但是这些19种测定在传统上依赖于表面标记,缺乏克隆分辨率来区分20个茎和祖细胞的异质子集。为了应对这一21个挑战,我们开发了Strack,这是一个无偏的框架,纵向追踪22个克隆基因表达和膨胀动力学,并在获得23个癌症突变之前和之后。我们研究了两个不同的白血病驱动突变,即DNMT3A-24 R882H和NPM1CA,发现对这两种突变的响应在不同的干细胞状态下均为25个变量。具体而言,通常随时间越来越多的分化26个偏置干细胞可以有效地随两个突变扩展27。npm1c突变令人惊讶地逆转了克隆蛋白的内在偏置28,茎偏置的克隆会引起更加成熟的恶性29个州。我们提出了一个克隆的“反应规范”,其中预先存在的克隆状态30决定了不同的癌症表型潜力。31 32关键字:单细胞,癌症开始,原始细胞,谱系跟踪,DNMT3A,33 NPM1C,克隆造血症,髓样恶性肿瘤34 35 36亮点:37-单细胞在克隆级别的癌症开始(strack)。43 4438-离体扩展文化维持内在和可遗传的HSC异质性。39-预启示性突变增强了高输出干细胞的自我更新,40增加了其生存概率。41-转化突变重编程低输出干细胞命运到更成熟的42个恶性状态。
作物疾病大流行通常是由无性繁殖的植物病原体的克隆谱系驱动的。尽管遗传变异有限,并且在没有性重组的情况下,这些克隆病原体如何不断地适应其宿主。在这里,我们揭示了在爆炸真菌斑点的大流行克隆谱系中的水平染色体转移的多个实例(Syn。pyricularia)oryzae。我们确定了一个Hori Zontly转移的1.2MB辅助迷你染色体,该小染色体在大米爆炸真菌谱系和谱系感染印度鹅(Eleusine Indiona)的Oryzae分离株之间非常保守,这是一种经常生长的野生草,在耕种陶瓷毛皮的附近生长。此外,我们表明,这种迷你染色体是通过克隆大米爆炸株通过至少九个不同的转移事件水平获取的。这些发现建立了水平的迷你染色体转移,作为促进不同宿主相关的爆炸真菌谱系中遗传交换的一种机制。我们提出,感染野草的爆炸真菌是遗传储层,这些储层驱动了困扰谷物作物的大流行克隆谱系的基因组进化。
作物疾病大流行通常是由无性繁殖的植物病原体的克隆谱系驱动的。尽管遗传变异有限,并且在没有性重组的情况下,这些克隆病原体如何不断地适应其宿主。在这里,我们揭示了在爆炸真菌斑点的大流行克隆谱系中的水平染色体转移的多个实例(Syn。pyricularia)oryzae。我们确定了一个Hori Zontly转移的1.2MB辅助迷你染色体,该小染色体在大米爆炸真菌谱系和谱系感染印度鹅(Eleusine Indiona)的Oryzae分离株之间非常保守,这是一种经常生长的野生草,在耕种陶瓷毛皮的附近生长。此外,我们表明,这种迷你染色体是通过克隆大米爆炸株通过至少九个不同的转移事件水平获取的。这些发现建立了水平的迷你染色体转移,作为促进不同宿主相关的爆炸真菌谱系中遗传交换的一种机制。我们提出,感染野草的爆炸真菌是遗传储层,这些储层驱动了困扰谷物作物的大流行克隆谱系的基因组进化。