meCA -MRSA通过PCR靶向SA-442物种特异性片段和MECA基因(6,7)。我们使用PCR(8,9),与LUKF/ LUKS-PV基因的隶属关系和存在。我们通过使用磁盘扩散方法对抗生素抗性进行了表型检测,并根据欧洲抗菌敏感性测试版本14.0(10)提供的指南来解释结果。我们使用核素体微生物DNA隔离试剂盒提取DNA(Machery-Nagel,https://www.mn-net.com)。图书馆的准备和全基因组排序被外包给Eurofins(德国体育馆),其中使用了Illumina Novaseq6000技术(https:// www.illumina.com)。读取质量质量并通过使用Shovill v1.0.4(https://github.com/tseemann/shovill)来从头组装,我们通过使用quard v5.0.2(https://quast.sourceforge.net)评估了组装质量。We performed typing by using MLSTFinder v2.0.9 and spaTyper (Genomic Epidemiology Cen- ter, http://www.genomicepidemiology.org) and identified resistance and virulence genes by using ResFinder 4.1 and VirulenceFinder v2.0.3 (Genomic Epidemiology Center) (identity >95%) and confirmed resistance genes通过使用卡3.2.9。(https://card。mcmaster.ca)。我们通过使用bakta 1.9.1(https://bakta.computational.bio)来表征转座TN 554的遗传环境。要比较主体,我们使用了国家生物技术信息中心(NCBI)BLASTN工具(https:// bast。ncbi.nlm.nih.gov)。,我们通过使用Roary以前出版的繁殖(6)(Roary v3.13.0,Gubbins v2.4.1和SNP-Dist v0.7.0; https:/https://github.com)在所有CC398 PVL-Posistive rypseques tripseq:
白血病的克隆进化通常发生在细胞毒性化疗和靶向治疗的选择压力下。1 与与化疗中获得耐药突变相关的 B 细胞急性淋巴细胞白血病 (B-ALL) 复发不同,包括博纳吐单抗和抗 CD19 嵌合抗原受体 (抗 CD19 CAR) T 细胞疗法在内的 CD19 靶向免疫疗法后的克隆进化主要由母细胞的免疫表型决定。1,2 CD19 的下调和 CD19 阴性亚克隆的选择是 CD19 阴性复发的潜在机制。3 随着细胞表面抗原靶向治疗的广泛使用,谱系转换的频率越来越高。近期一项研究报道,在T细胞介导疗法后发生谱系转换的患者中,48.90% (23/47) 的患者接受了CAR-T细胞治疗,51.10% (24/47) 的患者在谱系转换前接受了博纳吐单抗治疗。4 本文介绍一例罕见病例,患者患有BCR::ABL1多谱系受累的B-ALL,在多次接受抗CD19 CAR-T细胞巩固治疗后,出现免疫球蛋白重链 (IGH) 克隆性演化,并伴有急性髓系白血病 (AML) 表型和形态学改变。患者女,56岁,2021年12月出现疲劳、出汗过多等症状。外周血细胞计数显示白细胞计数升高(185.32×10 9 /L)、贫血(血红蛋白96 g/L)和血小板减少(14×10 9 /L)。骨髓穿刺涂片显示中型原始细胞,胞浆稀少且无颗粒,染色质细腻,核仁明显(图 1A)。骨髓穿刺形态分析表明淋巴原始细胞占骨髓单核细胞的 73.50%。免疫表型分析证实了 B-ALL 的诊断,表达 CD34、CD10、CD19 和细胞质 CD79a (cCD79a)。原始细胞表达 CD13、CD33,对其他髓系标志物(HLA-DR、MPO 等)呈阴性(表 1;图 1B-F)。染色体分析显示 46,XX,t(9;22)(q34;q11)[2]/45,idem,- 7[5]/45,idem,-7,20q-[3],定量聚合酶链反应 (PCR) 证实了 BCR::ABL1 (b2a2/b3a2) 融合。热点突变的下一代测序 (NGS) 显示 RUNX1 突变,变异等位基因频率为 44.29%,MYD88 突变,变异等位基因频率为 50.80%,未检测到 ABL1 激酶结构域突变(表 1)。因此,通过形态学、免疫表型、细胞遗传学和分子
1。Xu Y,Chiang YH,HO PC,Vannini N:线粒体决定HSC和T细胞的功能和命运。2023 CANCAR IMMUNOL RES 2。Girotra M, Chiang YH, Charmoy M, Ginefra P, Hope HC, Bataclan C, Yu YR, Schyrr F, Franco F, Geiger H, Cherix S, Ho PC, Naveiras O, Auwerx J, Held W, Vannini N: Induction of mitochondrial recycling reverts age-associated decline of the hematopoietic and immune系统。2023 NAT老化3。Wilkinson AC,Ishida R,Nakauchi H,Yamazaki S:小鼠造血干细胞的长期离体扩张。 2020 NAT ProtoC 4。 Wang Y,Backman TWH,Horan K,Girke T:FMCSR:不匹配的最大最大常见子结构搜索R. 2013 Bioinformatics 5。 Hennig C:_FPC:clustering_的灵活过程。 2024 cran.r- project.org/package=fpc 6。 Maechler,M.,Rousseeuw,P.,Struyf,A.,Hubert,M.,Hornik,K:集群:聚类分析基础知识和扩展。 2023 cran.r-project.org/package=cluster 7。 Ritz,C.,Baty,F.,Streibig,J.C.,Gerhard,D:使用R 2015 PLOS ONE 8。的剂量反应分析 Landrum G等人:RDKIT:开源化学信息学。 2024 doi.org/10.5281/zenodo.591637Wilkinson AC,Ishida R,Nakauchi H,Yamazaki S:小鼠造血干细胞的长期离体扩张。2020 NAT ProtoC 4。Wang Y,Backman TWH,Horan K,Girke T:FMCSR:不匹配的最大最大常见子结构搜索R. 2013 Bioinformatics 5。Hennig C:_FPC:clustering_的灵活过程。2024 cran.r- project.org/package=fpc 6。Maechler,M.,Rousseeuw,P.,Struyf,A.,Hubert,M.,Hornik,K:集群:聚类分析基础知识和扩展。2023 cran.r-project.org/package=cluster 7。Ritz,C.,Baty,F.,Streibig,J.C.,Gerhard,D:使用R 2015 PLOS ONE 8。Landrum G等人:RDKIT:开源化学信息学。2024 doi.org/10.5281/zenodo.591637
同种异体造血细胞移植(HCT)用供体1,2的患者代替了负责血液产生的干细胞。在这里,为了量化长期干细胞植入的动力学,我们测序了来自2,824个单细胞衍生的造血菌落的基因组,该菌落是十个供体 - recipient对的hla匹配sibling sibling sibling hct 3后9-31年进行的。与年轻的捐助者(移植期18-47年),有5,000-30,000个干细胞植入了,在采样时仍在为造成造血症。年龄较大的捐助者(50 - 66年)的估计低十倍。植入的细胞对髓样,B淋巴样和T淋巴样群体产生了多肾化贡献,尽管单个克隆经常对一种或其他成熟的细胞类型表现出偏见。接受者的克隆多样性低于匹配的捐助者,相当于大约10 - 15年的额外衰老,这是干细胞克隆的扩张大约25倍。与移植相关的种群瓶颈无法解释这些差异。取而代之的是,系统发育树认为HCT特异性选择的两种不同模式。在修剪选择中,供体富含克隆的克隆扩张的基础细胞分裂发生在供体中,在移植之前,即从优先动员,收集,生存的离体或初始归巢中获得的选择性优势。在生长选择中,植入后的受体骨髓中发生了克隆膨胀的基础细胞分裂,最明显的是具有多个驱动器突变的克隆。与捐助者的不受干扰的造血相比,从本地环境中拔起干细胞并将其移植到异物中会夸大选择性压力,使克隆多样性的丧失扭曲和加速。
。cc-by-nc-nd 4.0国际许可证(未获得同行评审证书)获得的是作者/资助者,他已授予Biorxiv授予Biorxiv的许可,以永久显示预印本。这是该版本的版权所有,该版本发布于2024年8月3日。 https://doi.org/10.1101/2024.01.25.577216 doi:biorxiv preprint
。cc-by-nc-nd 4.0国际许可证。是根据作者/资助者提供的预印本(未经同行评审认证)提供的,他已授予Biorxiv的许可证,以在2024年1月25日发布的此版本中显示此版本的版权持有人。 https://doi.org/10.1101/2024.01.25.577216 doi:biorxiv preprint
杂种优势描述的是杂交植株相对于其亲本的产量和稳健性增加,是现代作物育种的基石 1 。除双亲杂种优势外,在玉米、马铃薯和苜蓿中还观察到同源多倍体渐进杂种优势 (APH),当来自四个不同祖父母的基因组片段组合时,会产生额外的杂种优势效应 2 。APH 尚未在商业育种中得到充分利用,因为减数分裂会重新分配基因型,并且无法生产受益于 APH 的基因一致的种子。先前在拟南芥和水稻中建立的“有丝分裂而非减数分裂”(MiMe) 系统可产生克隆的、未减数的配子 3 – 7 ,但尚未在双子叶作物中建立或在设计多倍体基因组工程中进行测试。在这里,我们建立了番茄多倍体基因组设计,通过两个不同杂交亲本产生的克隆配子的杂交,实现了四种预定义基因组单倍型的可控组合。我们着手在番茄中建立 MiMe 系统,以可控的方式产生克隆配子。基于对番茄减数分裂突变体的基本了解(补充说明 1),我们发现可以通过 SlSPO11-1、SlREC8 和 SlTAM 的突变在自交系番茄中建立功能性 MiMe 系统(图 1a-c、扩展数据图 1 和 2、补充图 1-16 和补充表 1-4)。我们在三种杂交番茄基因型中实施了 MiMe 系统,包括 Moneyberg-TMV ⨯ Micro-Tom (MbTMV-MT) 模型杂交品种、枣番茄商业杂交品种‘Funtelle’和串番茄商业杂交品种‘Maxeza’(图 1a-c)。我们鉴定出两个独立的 MbTMV-MT、三个独立的 Funtelle 和三个独立的 Maxeza 品系,它们在 SlSPO11-1、SlREC8 和
。CC-BY-NC-ND 4.0 国际许可证下可用(未经同行评审认证)是作者/资助者,他已授予 bioRxiv 永久展示预印本的许可。它是此预印本的版权持有者此版本于 2024 年 1 月 2 日发布。;https://doi.org/10.1101/2023.04.04.535588 doi:bioRxiv 预印本
通过下一代测序分析不同的肿瘤区域可以评估肿瘤内遗传异质性 (ITGH),这种现象已在某些肿瘤类型中得到广泛研究,但在子宫内膜癌 (EC) 中的研究较少。在本研究中,我们试图使用全外显子组测序来表征 9 种不同 EC 的空间和时间异质性,并对所分析的 42 个原发性肿瘤区域和 30 个转移性样本进行靶向测序验证。此外,通过比较基因组杂交阵列评估了浆液性癌的拷贝数变异。从通过全外显子组测序鉴定的体细胞突变中,有 532 个通过靶向测序验证。基于这些数据,为每例重建的系统发育树使我们能够确定肿瘤的进化并将其与肿瘤进展、预后和复发性疾病的存在相关联。此外,我们研究了不明确的 EC 的遗传图谱,并使用获得的分子谱来指导为该患者选择潜在的个性化疗法,随后通过患者来源的异种移植模型的临床前测试验证了该疗法。总体而言,我们的研究揭示了分析不同肿瘤区域对解读 EC 中的 ITGH 的影响,这有助于做出最佳治疗决策。
为了研究克隆造血性基因突变的体外基因突变,并揭示了对人类茎和祖细胞(HSPC)室的直接影响,我们针对健康的,年轻的造血祖细胞,该细胞源自脐带血液样本,并用CRASPR/CAS9技术来源。位点特异性突变,随后在短期和长期的体外培养试验中分析,以评估自我更新和差异能力。菌落形成单元(CFU)测定法显示,TET2突变(TET2 MUT)细胞的自我更新增强,而ASXL1 MUT以及DNMT3A MUT细胞的自我更新并未揭示短期培养的显着变化。引人注目的是,在所有突变体的长期培养实验中都可以检测到增强的菌落形成,表明自我更新能力的增加。尽管我们还可以证明所有突变体的不同细胞克隆的优先克隆膨胀,但长期培养后的克隆组成揭示了对HSPC的突变特异性影响。因此,通过使用原发性脐带血细胞,我们能够研究表观遗传驱动器突变,而不会混淆年龄或复杂的突变景观,而我们的发现为克隆血肿相关突变对人类茎和前代细胞的自治和核心组成的直接影响提供了证据。