摘要。为了提高安全性并减少驾驶舱中的高峰工作量情况,开发了一种具有不同交互风格的工具,用于在进近过程中空中交通管制指示跑道变更的情况。在一项实验中,对新工具和传统驾驶舱的工作量进行了比较。每次实验运行后,通过自我评估以及每次运行期间的眨眼频率来测量工作量。结果表明,对于两名机组人员中的一名,使用新工具后,自我评估的工作量会减少,眨眼频率表明另一名机组人员的工作量也会减少。考虑到机组人员在仅进行几次训练后就使用了该工具,并且机组人员提供了积极的反馈,因此得出结论,该工具对高峰工作量有积极的影响。
2.1目前窄带(L波段、VHF、HF)系统多用于座舱通信,提供语音和数据通信服务;Ku/Ka波段多用于客舱通信,为客舱旅客提供互联网接入服务。随着以Ka/Ku高通量卫星为代表的新一代宽带卫星技术的发展和成熟,客舱通信容量大幅提升,单机速率已高达100Mbps,流量成本大幅降低(目前约为座舱成本的1/100或以下)。以座舱宽带连接为特征的新一代互联飞机,有助于提升航空公司运维和管控服务能力,未来将迎来爆发式发展。近年来,包括Inmarsat在内的许多国家和组织都在大力发展和部署高通量卫星。HTS业务网络的快速发展,为一体化驾驶舱客舱宽带空地互联的规模应用提供了有利条件和机遇。
摘要—针对传统VAPS XT座舱显控拓扑结构存在的问题,本文提出了基于综合数据分布网络的VAPS XT座舱显控系统仿真。本仿真采用综合数据分布网络替代nCom通信网络。通过该方法,可以将仿真模块的业务逻辑与数据通信机制分离。因此,各个仿真模块只需与数据分布网络进行交互。数据分布网络通过nCom数据通信网关与VAPS XT仿真软件进行数据传输。实践证明,这是一种减少nCom通信编程工作、提高座舱显控仿真系统的可扩展性和灵活性的有效方法。
本论文由候选人论文委员会主席、航空科学系 John A. Wise 博士指导撰写,并已获得其论文委员会成员的批准。该论文已提交给研究生院,并被接受为部分满足航空科学硕士学位的要求。
摘要—针对传统VAPS XT座舱显控拓扑结构存在的问题,本文提出了基于综合数据分布网络的VAPS XT座舱显控系统仿真。本次仿真使用综合数据分布网络替代nCom通信网络。通过该方法,可以将仿真模块的业务逻辑与数据通信机制分离,各个仿真模块只需与数据分布网络进行交互,数据分布网络通过nCom数据通信网关与VAPS XT仿真软件进行数据传输。实践证明,这是一种减少nCom通信编程工作量、提高座舱显控仿真系统的可扩展性和灵活性的有效方法。 索引词—座舱显控系统,数据分布网络,VAPS XT。
D, F 由于自制飞机的设计和建造涉及许多技术方面,设计师和建造者经常专注于项目的机械问题而忽视了人为因素。未能认识到飞行员-飞机界面在与人类能力和局限性的兼容性方面的重要性,可能会导致驾驶舱设计使飞机飞行变得困难,甚至导致失误。虽然驾驶舱设计中的人为因素忽视可能是无意的疏忽或出于技术原因的故意妥协,但通常是由于缺乏人为因素知识。因此,设计师和建造者经常根据个人经验和意见来评估和解决人为因素问题。在某些情况下,这可能就足够了,但更常见的是驾驶舱内飞行员-飞机界面出现故障。由于驾驶舱设计包括人类的感觉、运动、心理和身体特征,一篇文章不可能涵盖驾驶舱设计中的所有人为因素。然而,正如每个问题一样,都有一个合乎逻辑的起点。飞行员必须身体上适合驾驶舱(物理尺寸),并且必须能够操作(功能尺寸)控制装置。本文讨论驾驶舱设计的物理尺寸。测量人体的科学是人体测量学,虽然各种各样的人都被
摘要 降低飞行员的工作量是通用航空 (GA) 面临的一个关键挑战。GA 是指航空业的一个分支,其特点是飞行员非专业和非商业操作。目前,这些飞行操作中的数字技术支持主要限于消费类平板电脑和导航应用程序。研究人员和从业人员预计,在不久的将来,通过混合现实应用程序和其他机器支持系统,飞行员的支持将会增加。控制、过滤和处理 GA 驾驶舱中引入的大量新数字数据将需要新的有形输入和输出技术和设备。虽然这在小型 GA 飞机的紧凑和不稳定的驾驶舱中尤其如此,但我们看到了设计用于其他航空分支甚至自主或无人机操作的有形设备的机会。为此,我们希望召集关注未来航空驾驶舱设计的研究人员和从业人员,并制定一项战略,为 (通用) 航空中的人机交互和有形交互研究开发专门的科学渠道。
摘要 商用飞机驾驶舱中的触摸屏输入具有潜在优势,包括易于使用、可修改和减轻重量。然而,对湍流的耐受性是其部署的挑战。为了更好地了解湍流对驾驶舱输入方法的影响,我们对三种输入方法的用户性能进行了比较研究——触摸、轨迹球(目前在商用飞机中使用)和旨在帮助手指稳定的触摸屏模板覆盖。在各种交互式任务和三种模拟湍流水平(无、低和高)下比较了这些输入方法。结果表明,随着振动的增加,性能下降,主观工作量增加。当精度要求较低时(在所有振动下),基于触摸的交互比轨迹球更快,但对于更精确的指向,尤其是在高振动下,它更慢且更不准确。模板没有改善触摸选择时间,尽管它确实减少了高振动下小目标的错误,但只有当手指抬起错误通过超时消除时才会发生。我们的工作为受湍流影响的任务类型以及在不同振动水平下表现最佳的输入机制提供了新的信息。
摘要 商用飞机驾驶舱中的触摸屏输入具有潜在优势,包括易于使用、可修改和减轻重量。但是,对湍流的耐受性是其部署的挑战。为了更好地了解湍流对驾驶舱输入方法的影响,我们对三种输入方法的用户性能进行了比较研究——触摸、轨迹球(目前在商用飞机中使用)和旨在帮助手指稳定的触摸屏模板覆盖。在各种交互式任务和三个模拟湍流级别(无、低和高)下比较了这些输入方法。结果表明,随着振动的增加,性能下降,主观工作量增加。当精度要求较低(在所有振动下)时,基于触摸的交互比轨迹球更快,但对于更精确的指向,尤其是在高振动下,它的速度较慢且准确性较低。模板并没有改善触摸选择时间,尽管它确实减少了高振动下小目标的错误,但只有当手指抬起错误通过超时消除时才会发生这种情况。我们的工作提供了有关受湍流影响的任务类型以及在不同振动水平下表现最佳的输入机制的新信息。
影响。4 当错误被揭露时,人们往往普遍抵制公开细节和情况。造成这种情况的原因在于,医学界通常对人为错误采取个人化的态度。3 因此,错误被认为是某个人或一小群人的缺点,因此责任应该由他们承担。因此,即使没有明说,也隐含着责任。这种对人为错误的个人化态度在许多方面都令人满意;失败得到了“控制”并得到了解释。它为同事、患者及其家属提供了简单而直接的因果关系。个人化的态度也导致了耸人听闻的新闻报道。(媒体似乎对“飞行员失误”这一短语和概念很满意,认为它是空难的一个常见因素。简单在线搜索手术失误,就会出现全国性报纸的头条新闻,描述“笨手笨脚的外科医生”、“拙劣的手术”和“杀婴者”的“丑闻”。)个人化态度的一个根本缺陷是它忽略了个人以外的因果因素;因此,错误再次发生的可能性很高。外科医生专用数据报告,如英国心脏外科数据库 5,虽然出于善意,但支持