1 巴塞尔大学医院医学与临床研究系传染病与医院流行病学科,瑞士巴塞尔 4031;2 巴塞尔大学医学院,瑞士巴塞尔 4031;3 Certara UK Limited,英国谢菲尔德;4 瑞士洛桑大学医院和洛桑大学实验室医学与病理学系临床药理学服务与实验室;5 巴塞尔大学巴塞尔州立大学,瑞士布鲁德霍尔茨;6 瑞士洛桑大学医院传染病服务中心;7 瑞士苏黎世大学医院传染病与医院流行病学系;8 瑞士伯尔尼大学医院传染病系; 9 瑞士卢加诺日内瓦大学及瑞士南部大学卢加诺州立医院传染病科;10 瑞士日内瓦大学日内瓦大学医院传染病科;11 圣加仑州立医院传染病和医院流行病学系
脱碳复杂的工业能源系统是减轻气候变化的重要步骤。设计此类部门耦合的工业能源系统向低碳设计的过渡非常具有挑战性,因为在系统设计中,必须考虑成本效益的操作和整个生命周期中环境影响的减少。可以使用软件来确定最佳系统设计:最近,引入了开源框架SECMOD,以通过完全整合生命周期评估来考虑环境影响,以实现多能系统模型的线性优化。在这项工作中,我们扩展了SECMOD,以允许综合决策对于建模工业能源系统至关重要。因此,我们提供了第一个开源的混合企业线性程序框架,并完整地集成了生命周期评估。我们使用secmod来研究扇区耦合的工业能源系统中抽水热量的储能系统的好处,并通过比较经济和气候最佳限度来确定有关系统设计的权衡。
在咖啡阿拉伯咖啡中使用杂种活力或杂种。培养逐渐在全球范围内广泛探索,因为研究已经发展为理解这种现象以及营养繁殖技术或男性疾病,从而使其可行。此外,采用这项技术的咖啡生产商不断增加。因此,我们研究了杂种的存在和幅度,并估算了父母在双方杂交中的结合能力。该实验是在2019年安装的,使用带有三个复制的随机块设计,其实验图由六种植物组成。实验处理由90种杂种和34条父母线组成,其中根据前三个收获的累积结果评估了每公顷加工咖啡的谷物产量。在124种处理之间观察到了显着差异,最佳杂种的平均累积生产率值超过了四个最常用的商业品种中的杂种,每公顷超过74袋咖啡。平均收益率平均杂种为64.2%,从-26.1到184.4不等。一般组合能力(GCA)和特定组合能力(SCA)具有统计学意义,表现最佳的线被确定为潜在的父母是“Acauãnovo”,“ IAC 125 RN”,“ MGS Liberdade”,“ MGS Liberdade”,“Catiguámg2”,以及“ Sarchimor MG 88440”。有希望用于商业剥削的混合动力车相对于最佳商业标准品种的生产优势,具有30%的生产优势,从而增强了这项技术对阿拉比卡菌的耕种未来的潜力。
*电子邮件:p.melchiorre@unibo.t对反应的选择性的精确控制是一个基本目标。尽管在实现立体控制方面已经获得了巨大的进步,但底物内官能团(化学选择性)的选择性操纵仍然是一个挑战。醛的氰化作用提供了一个说明性的例子:1,2-将亲核氰化物添加到醛基团中是立体选择性cat-alytic过程的第一个例子之一。相比之下,即使是在紫红色的变体中,也是线性α,β-未饱和醛的共轭氰化物仍然存在染料。主要难度在于在首选氰化物1,2粘合方面达到1,4化学选择性。在这里,我们报告了一种不对称的催化方法,以实现二烷的独家结合氰化。手性有机催化剂具有可见光激活的光蛋白-DOX催化剂的协同作用促进了抑制的单电子还原,从而诱导了正式的极性反转。在特征上具有亲核的手性自由基被具有完美的1,4化学选择性和良好立体控制的亲电氰化物源拦截。
在杂志杂志的出版物中,由弗朗索瓦·福克斯(FrançoisFuks),癌症表观遗传学实验室,ULB医学学院,ULB-癌症研究中心和H.U.B. Jules Bordet Institute领导的研究人员。表明,实际上,DNA和RNA表观遗传学可能比以前想象的更相互联系。研究人员发现他们形成了互补的调节系统,其中DNA表观遗传学组织可用的基因和RNA表观遗传学会动态调节其使用。
优化酶在新型化学环境中起作用是合成生物学具有广泛应用的核心目标。在这项工作中,我们通过使用机器学习(ML)从超高通知功能屏幕中融合进化信息和实验数据来开发一种技术,用于设计蛋白质变体的活跃和多样化的蛋白质变体库。我们在多轮运动中验证了我们的方法,以优化NUCB的活性,nucB的活性,核酸酶酶在慢性伤口的治疗中应用。我们将我们的ML引导运动与维特罗定向进化(DE)和尼里科(Silico In-Silico)命中重组(HR)的平行运动进行了比较。ML引导的运动发现了数百种高度活跃的变体,最多有19倍的核酸酶活性改善,表现优于DE发现的12倍改进,并且在命中率和多样性方面表现出色。我们还表明,仅在进化数据上训练的模型而无需访问任何实验数据,就可以比传统的初始图书馆生成方法以明显高的速率设计功能变体。为了推动ML引导酶设计的未来进展,我们策划了一个55K多种变体的数据集,这是迄今为止最广泛的基因型 - 表型酶活性景观之一。数据和代码可在以下网址提供:https://github.com/google-deepmind/nuclease_design。
对单分子水平的蛋白质的分析发现了在合奏平均技术中掩盖的异质行为。传统上,酶的数字定量涉及通过促荧光底物的转化将单个分子划分为微室的单分子的观察和计数。基于线性信号扩增的策略仅限于几种酶,其周转率足够高。在这里我们表明,通过将指数分子放大器的敏感性与DNA-酶电路的模块化和液滴读数结合,允许在单分子水平上特异性检测几乎任何D(R)NA与NA相关的酶促活性。该策略(表示为数字PUMA)已通过十几种不同的酶进行了验证,其中包括许多催化速率缓慢的酶,并降低到Pyogenes cas9的明显单周转极限。数字计数独特地产生绝对摩尔定量,并在所有经过测试的商业制剂中揭示了很大一部分非活性催化剂。通过实时监测单个酶分子的扩增反应,我们还提取了催化剂种群中活性的分布,从而揭示了各种应力下的替代失活途径。我们的方法极大地扩大了可以从单分子分辨率下的定量和功能分析中受益的酶的数量。我们预计数字puma将作为一种多功能框架,用于在诊断或生物技术应用中进行准确的酶定量。这些数字测定也可以用于研究蛋白质功能异质性的起源。
设计酶以在新型化学环境中起作用是合成生物学具有广泛应用的核心目标。在这项工作中,我们描述了一项由机器学习(ML)引导的运动,以设计核酸酶NucB,核酸核酸核酸hut(一种酶)在治疗慢性伤口时应用。在多轮酶演化运动中,我们将超高通量功能筛选与ML相结合,并将其与维特罗定向进化(DE)的平行运动(DE)和硅内命中率重组(HR)进行了比较。ML引导的运动发现了数百种高度活跃的变体,最多有19倍的核酸酶活性改善,表现优于DE发现的12倍改进。此外,ML设计的命中率距离NUCB WildType高达15个突变,在命中率和多样性方面远远超过了HR方法。我们还表明,仅在进化数据上训练的模型而无需访问任何实验数据,就可以比传统的初始图书馆生成方法以明显高的速率设计功能变体。为了推动ML引导设计的未来进展,我们策划了一个55K多种变体的数据集,这是迄今为止最广泛的基因型 - 表型酶活性景观之一。数据和代码可在以下网址提供:https://github.com/google-deepmind/nuclease_design。
设计酶以在新型化学环境中起作用是合成生物学具有广泛应用的核心目标。使用机器学习(ML)引导蛋白质设计有可能通过精确导航坚固的健身景观来加速发现高性能酶。在这项工作中,我们描述了ML引导的运动,以设计Nuclease NucB,该核定是一种酶,该酶在治疗慢性伤口的酶降解生物膜,以治疗慢性伤口。在多发酶演化活动中,我们将超高通量功能筛选与ML相结合,并将其与平行的电脑内定向进化(DE)和硅内命中重组(HR)策略进行了比较。ML引导的运动发现了数百种高度活跃的变体,最多有19倍的核酸酶活性改善,而DE的最佳变体提高了12倍。此外,ML设计的命中率距离NUCB WildType高达15个突变,在命中率和多样性方面远远超过了HR方法。我们还表明,仅在进化数据上训练的模型而无需访问任何实验数据,就可以比传统的初始图书馆生成方法以明显高的速率设计功能变体。为了推动ML引导设计的未来进展,我们策划了一个55K多种变体的数据集,这是迄今为止最广泛的基因型 - 表型酶活性景观之一。数据和代码可在以下网址提供:https://github.com/google-deepmind/nuclease_design。